利用双正交贝塞尔序列表征Riesz碱基

IF 1 Q1 MATHEMATICS
E. Zikkos
{"title":"利用双正交贝塞尔序列表征Riesz碱基","authors":"E. Zikkos","doi":"10.15330/cmp.15.2.377-380","DOIUrl":null,"url":null,"abstract":"Recently D.T. Stoeva proved that if two Bessel sequences in a separable Hilbert space $\\mathcal H$ are biorthogonal and one of them is complete in $\\mathcal H$, then both sequences are Riesz bases for $\\mathcal H$. This improves a well known result where completeness is assumed on both sequences.
 In this note we present an alternative proof of Stoeva's result which is quite short and elementary, based on the notion of Riesz-Fischer sequences.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing Riesz bases via biorthogonal Bessel sequences\",\"authors\":\"E. Zikkos\",\"doi\":\"10.15330/cmp.15.2.377-380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently D.T. Stoeva proved that if two Bessel sequences in a separable Hilbert space $\\\\mathcal H$ are biorthogonal and one of them is complete in $\\\\mathcal H$, then both sequences are Riesz bases for $\\\\mathcal H$. This improves a well known result where completeness is assumed on both sequences.
 In this note we present an alternative proof of Stoeva's result which is quite short and elementary, based on the notion of Riesz-Fischer sequences.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.15.2.377-380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.2.377-380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

最近,D.T. Stoeva证明了如果可分离Hilbert空间$\mathcal H$中的两个贝塞尔序列是双正交的,并且其中一个在$\mathcal H$中是完全的,那么这两个序列都是$\mathcal H$的Riesz基。这改进了一个众所周知的结果,即假设两个序列都是完备的。在这篇笔记中,我们基于Riesz-Fischer序列的概念,给出了对Stoeva结果的一个相当简短和基本的替代证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing Riesz bases via biorthogonal Bessel sequences
Recently D.T. Stoeva proved that if two Bessel sequences in a separable Hilbert space $\mathcal H$ are biorthogonal and one of them is complete in $\mathcal H$, then both sequences are Riesz bases for $\mathcal H$. This improves a well known result where completeness is assumed on both sequences. In this note we present an alternative proof of Stoeva's result which is quite short and elementary, based on the notion of Riesz-Fischer sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信