基于水平联邦学习的复合海缆在线监测数据发布方法

Pub Date : 2023-09-10 DOI:10.12694/scpe.v24i3.2275
Xinli Lao, Jiajian Zhang, Chuanlian Gao, Huakun Deng, Yanlei Wei, Zhenzhong Liu
{"title":"基于水平联邦学习的复合海缆在线监测数据发布方法","authors":"Xinli Lao, Jiajian Zhang, Chuanlian Gao, Huakun Deng, Yanlei Wei, Zhenzhong Liu","doi":"10.12694/scpe.v24i3.2275","DOIUrl":null,"url":null,"abstract":"Conventional online composite submarine cable monitoring data release mostly adopts the method and principle of blockchain dynamic zoning consensus. In the data release process, there are omissions, and it takes a long time to complete the task, which reduces the timeliness of online composite submarine cable monitoring data release. Based on this, a new data publishing method is proposed by introducing horizontal federation learning. First, the online monitoring data of composite submarine cables are collected and preprocessed to eliminate the high-frequency capacitive effect of submarine cables. Secondly, manage composite submarine cable data nodes, transform the status relationship of data nodes, and ensure the quality of subsequent data release. A horizontal federation learning model is established to design the online monitoring data release process. The experimental results show that the new data release method is highly feasible. With the increasing online monitoring data of composite submarine cables, the time required for data release is short, and the timeliness is high.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method for Online Monitoring Data Release of Composite Submarine Cable Based on Horizontal Federated Learning\",\"authors\":\"Xinli Lao, Jiajian Zhang, Chuanlian Gao, Huakun Deng, Yanlei Wei, Zhenzhong Liu\",\"doi\":\"10.12694/scpe.v24i3.2275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional online composite submarine cable monitoring data release mostly adopts the method and principle of blockchain dynamic zoning consensus. In the data release process, there are omissions, and it takes a long time to complete the task, which reduces the timeliness of online composite submarine cable monitoring data release. Based on this, a new data publishing method is proposed by introducing horizontal federation learning. First, the online monitoring data of composite submarine cables are collected and preprocessed to eliminate the high-frequency capacitive effect of submarine cables. Secondly, manage composite submarine cable data nodes, transform the status relationship of data nodes, and ensure the quality of subsequent data release. A horizontal federation learning model is established to design the online monitoring data release process. The experimental results show that the new data release method is highly feasible. With the increasing online monitoring data of composite submarine cables, the time required for data release is short, and the timeliness is high.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12694/scpe.v24i3.2275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12694/scpe.v24i3.2275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的在线复合海缆监测数据发布多采用区块链动态分区共识的方法和原理。数据发布过程中存在遗漏,完成任务耗时较长,降低了在线复合海缆监测数据发布的时效性。在此基础上,引入横向联邦学习,提出了一种新的数据发布方法。首先,采集复合海底电缆在线监测数据并进行预处理,消除海底电缆高频电容效应;其次,对复合海缆数据节点进行管理,转换数据节点的状态关系,保证后续数据发布的质量。建立了横向联邦学习模型,设计了在线监测数据发布流程。实验结果表明,新的数据发布方法是高度可行的。随着复合海底电缆在线监测数据的不断增加,数据发布所需时间短,及时性高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A Method for Online Monitoring Data Release of Composite Submarine Cable Based on Horizontal Federated Learning
Conventional online composite submarine cable monitoring data release mostly adopts the method and principle of blockchain dynamic zoning consensus. In the data release process, there are omissions, and it takes a long time to complete the task, which reduces the timeliness of online composite submarine cable monitoring data release. Based on this, a new data publishing method is proposed by introducing horizontal federation learning. First, the online monitoring data of composite submarine cables are collected and preprocessed to eliminate the high-frequency capacitive effect of submarine cables. Secondly, manage composite submarine cable data nodes, transform the status relationship of data nodes, and ensure the quality of subsequent data release. A horizontal federation learning model is established to design the online monitoring data release process. The experimental results show that the new data release method is highly feasible. With the increasing online monitoring data of composite submarine cables, the time required for data release is short, and the timeliness is high.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信