{"title":"具有排斥相互作用的抛物型Anderson模型的标度极限","authors":"Dirk Erhard, Martin Hairer","doi":"10.1002/cpa.22145","DOIUrl":null,"url":null,"abstract":"<p>We consider the (discrete) parabolic Anderson model <math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mi>u</mi>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>,</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>/</mo>\n <mi>∂</mi>\n <mi>t</mi>\n <mo>=</mo>\n <mi>Δ</mi>\n <mi>u</mi>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>,</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>+</mo>\n <msub>\n <mi>ξ</mi>\n <mi>t</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mi>u</mi>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>,</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\partial u(t,x)/\\partial t=\\Delta u(t,x) +\\xi _t(x) u(t,x)$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>≥</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$t\\ge 0$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>∈</mo>\n <msup>\n <mi>Z</mi>\n <mi>d</mi>\n </msup>\n </mrow>\n <annotation>$x\\in \\mathbb {Z}^d$</annotation>\n </semantics></math>, where the ξ-field is <math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathbb {R}$</annotation>\n </semantics></math>-valued and plays the role of a dynamic random environment, and Δ is the discrete Laplacian. We focus on the case in which ξ is given by a properly rescaled symmetric simple exclusion process under which it converges to an Ornstein–Uhlenbeck process. Scaling the Laplacian diffusively and restricting ourselves to a torus, we show that in dimension <math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>=</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d=3$</annotation>\n </semantics></math> upon considering a suitably renormalised version of the above equation, the sequence of solutions converges in law. As a by-product of our main result we obtain precise asymptotics for the survival probability of a simple random walk that is killed at a scale dependent rate when meeting an exclusion particle. Our proof relies on the discrete theory of regularity structures of Erhard and Hairer and on novel sharp estimates of joint cumulants of arbitrary large order for the exclusion process. We think that the latter is of independent interest and may find applications elsewhere.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 2","pages":"1065-1125"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A scaling limit of the parabolic Anderson model with exclusion interaction\",\"authors\":\"Dirk Erhard, Martin Hairer\",\"doi\":\"10.1002/cpa.22145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the (discrete) parabolic Anderson model <math>\\n <semantics>\\n <mrow>\\n <mi>∂</mi>\\n <mi>u</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>,</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>/</mo>\\n <mi>∂</mi>\\n <mi>t</mi>\\n <mo>=</mo>\\n <mi>Δ</mi>\\n <mi>u</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>,</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>+</mo>\\n <msub>\\n <mi>ξ</mi>\\n <mi>t</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n <mi>u</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>,</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\partial u(t,x)/\\\\partial t=\\\\Delta u(t,x) +\\\\xi _t(x) u(t,x)$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>≥</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$t\\\\ge 0$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mrow>\\n <mi>x</mi>\\n <mo>∈</mo>\\n <msup>\\n <mi>Z</mi>\\n <mi>d</mi>\\n </msup>\\n </mrow>\\n <annotation>$x\\\\in \\\\mathbb {Z}^d$</annotation>\\n </semantics></math>, where the ξ-field is <math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathbb {R}$</annotation>\\n </semantics></math>-valued and plays the role of a dynamic random environment, and Δ is the discrete Laplacian. We focus on the case in which ξ is given by a properly rescaled symmetric simple exclusion process under which it converges to an Ornstein–Uhlenbeck process. Scaling the Laplacian diffusively and restricting ourselves to a torus, we show that in dimension <math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>=</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$d=3$</annotation>\\n </semantics></math> upon considering a suitably renormalised version of the above equation, the sequence of solutions converges in law. As a by-product of our main result we obtain precise asymptotics for the survival probability of a simple random walk that is killed at a scale dependent rate when meeting an exclusion particle. Our proof relies on the discrete theory of regularity structures of Erhard and Hairer and on novel sharp estimates of joint cumulants of arbitrary large order for the exclusion process. We think that the latter is of independent interest and may find applications elsewhere.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"77 2\",\"pages\":\"1065-1125\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22145\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22145","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
摘要
我们考虑∂u (t, x) /∂t = Δ u (t,X) + ξ t (X) u (t, X) $\partial u(t,x)/\partial t=\Delta u(t,x) +\xi _t(x) u(t,x)$,t≥0 $t\ge 0$, x∈Z d $x\in \mathbb {Z}^d$,其中,ξ值为R $\mathbb {R}$,起动态随机环境的作用,Δ为离散拉普拉斯函数。我们重点讨论了ξ由一个适当重标的对称简单不相容过程给出的情况,在此情况下,它收敛于一个Ornstein-Uhlenbeck过程。将拉普拉斯函数扩展到一个环面,我们证明了在d = 3的维度$d=3$中,在考虑上述方程的适当的重整化版本后,解的序列是收敛的。作为我们的主要结果的副产品,我们获得了一个简单随机漫步的生存概率的精确渐近性,当遇到不相容粒子时,它以依赖于尺度的速率被杀死。我们的证明依赖于Erhard和Hairer的正则结构的离散理论,以及对排除过程的任意大阶联合累积量的新颖的尖锐估计。我们认为后者具有独立的利益,并可能在其他地方得到应用。
A scaling limit of the parabolic Anderson model with exclusion interaction
We consider the (discrete) parabolic Anderson model , , , where the ξ-field is -valued and plays the role of a dynamic random environment, and Δ is the discrete Laplacian. We focus on the case in which ξ is given by a properly rescaled symmetric simple exclusion process under which it converges to an Ornstein–Uhlenbeck process. Scaling the Laplacian diffusively and restricting ourselves to a torus, we show that in dimension upon considering a suitably renormalised version of the above equation, the sequence of solutions converges in law. As a by-product of our main result we obtain precise asymptotics for the survival probability of a simple random walk that is killed at a scale dependent rate when meeting an exclusion particle. Our proof relies on the discrete theory of regularity structures of Erhard and Hairer and on novel sharp estimates of joint cumulants of arbitrary large order for the exclusion process. We think that the latter is of independent interest and may find applications elsewhere.