基于PPF控制器的海上风电塔架系统控制、振动性能及能量传递研究

IF 1 Q1 MATHEMATICS
Ateq Alsaadi, Yasser Salah Hamed
{"title":"基于PPF控制器的海上风电塔架系统控制、振动性能及能量传递研究","authors":"Ateq Alsaadi, Yasser Salah Hamed","doi":"10.29020/nybg.ejpam.v16i4.4929","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the control, energy transfer, and vibration performance under multi mixed excitations for the offshore wind turbine tower (OWTT) system. For reducing the controlled system oscillations, the positive position feedback (PPF) controller is applied. The energy transfers occur in the system of wind turbine by adding the PPF controller to the system equations. With the help of the phase plane approach, frequency response equations, and Poincare maps, the bifurcation and stability at worst resonance cases are sought and investigated. The vibration behaviors are studied numerically at different parameters values for the wind turbine system. Additionally, the response and numerical outcomes are examined, also, the approach of multiple scales is used to establish the approximate solutions of the wind turbine-controlled system. Besides that, MAPLE and MATLAB algorithms are used to implement the numerical results and compare analytical solutions with numerical behavior. The results also be compared to previous research that has been published.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On controlling, Vibration Performance and Energy Transfer of an Offshore Wind Turbine Tower System via PPF Controller\",\"authors\":\"Ateq Alsaadi, Yasser Salah Hamed\",\"doi\":\"10.29020/nybg.ejpam.v16i4.4929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on the control, energy transfer, and vibration performance under multi mixed excitations for the offshore wind turbine tower (OWTT) system. For reducing the controlled system oscillations, the positive position feedback (PPF) controller is applied. The energy transfers occur in the system of wind turbine by adding the PPF controller to the system equations. With the help of the phase plane approach, frequency response equations, and Poincare maps, the bifurcation and stability at worst resonance cases are sought and investigated. The vibration behaviors are studied numerically at different parameters values for the wind turbine system. Additionally, the response and numerical outcomes are examined, also, the approach of multiple scales is used to establish the approximate solutions of the wind turbine-controlled system. Besides that, MAPLE and MATLAB algorithms are used to implement the numerical results and compare analytical solutions with numerical behavior. The results also be compared to previous research that has been published.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v16i4.4929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i4.4929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究了海上风电塔架系统在多混合激励下的控制、能量传递和振动性能。为了减小被控系统的振荡,采用了正位置反馈(PPF)控制器。通过在系统方程中加入PPF控制器来控制风力发电机组系统中的能量传递。利用相平面法、频率响应方程和庞加莱图,寻求和研究了最坏谐振情况下的分岔和稳定性。对风力发电系统在不同参数值下的振动特性进行了数值研究。此外,对响应和数值结果进行了检验,并采用多尺度方法建立了风力机控系统的近似解。此外,利用MAPLE和MATLAB算法实现了数值结果,并将解析解与数值行为进行了比较。研究结果还与之前发表的研究结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On controlling, Vibration Performance and Energy Transfer of an Offshore Wind Turbine Tower System via PPF Controller
In this paper, we focus on the control, energy transfer, and vibration performance under multi mixed excitations for the offshore wind turbine tower (OWTT) system. For reducing the controlled system oscillations, the positive position feedback (PPF) controller is applied. The energy transfers occur in the system of wind turbine by adding the PPF controller to the system equations. With the help of the phase plane approach, frequency response equations, and Poincare maps, the bifurcation and stability at worst resonance cases are sought and investigated. The vibration behaviors are studied numerically at different parameters values for the wind turbine system. Additionally, the response and numerical outcomes are examined, also, the approach of multiple scales is used to establish the approximate solutions of the wind turbine-controlled system. Besides that, MAPLE and MATLAB algorithms are used to implement the numerical results and compare analytical solutions with numerical behavior. The results also be compared to previous research that has been published.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信