若干二次丢番图方程的解

IF 1 Q1 MATHEMATICS
Alanoud Sibihi
{"title":"若干二次丢番图方程的解","authors":"Alanoud Sibihi","doi":"10.29020/nybg.ejpam.v16i4.4940","DOIUrl":null,"url":null,"abstract":"Let $P(t)_i^{\\pm}=t^{2k} \\pm i t^m$ be a non square polynomial and $Q(t)_i^{\\pm}=4k^2t^{4k-2}+i^2m^2t^{2m-2} \\pm 4imkt^{2k+m-2} -4t^{2k} \\mp 4it^m -1$ be a polynomial, such that $k \\geq 2m$ and $i \\in \\left\\lbrace 1,2 \\right\\rbrace $. In this paper, we consider the number of integer solutions of Diophantine equation $$E\\ :\\ x^2-P(t)_i^{\\pm}y^2-2P'(t)_i^{\\pm}x+4 P(t)_i^{\\pm} y +Q(t)_i^{\\pm}=0.$$ We extend a previous results given by A. Tekcan and A. Chandoul et al. . We also derive some recurrence relations on the integer solutions of a Pell equation.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solutions of Some Quadratic Diophantine Equations\",\"authors\":\"Alanoud Sibihi\",\"doi\":\"10.29020/nybg.ejpam.v16i4.4940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $P(t)_i^{\\\\pm}=t^{2k} \\\\pm i t^m$ be a non square polynomial and $Q(t)_i^{\\\\pm}=4k^2t^{4k-2}+i^2m^2t^{2m-2} \\\\pm 4imkt^{2k+m-2} -4t^{2k} \\\\mp 4it^m -1$ be a polynomial, such that $k \\\\geq 2m$ and $i \\\\in \\\\left\\\\lbrace 1,2 \\\\right\\\\rbrace $. In this paper, we consider the number of integer solutions of Diophantine equation $$E\\\\ :\\\\ x^2-P(t)_i^{\\\\pm}y^2-2P'(t)_i^{\\\\pm}x+4 P(t)_i^{\\\\pm} y +Q(t)_i^{\\\\pm}=0.$$ We extend a previous results given by A. Tekcan and A. Chandoul et al. . We also derive some recurrence relations on the integer solutions of a Pell equation.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v16i4.4940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i4.4940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$P(t)_i^{\pm}=t^{2k} \pm i t^m$为非平方多项式$Q(t)_i^{\pm}=4k^2t^{4k-2}+i^2m^2t^{2m-2} \pm 4imkt^{2k+m-2} -4t^{2k} \mp 4it^m -1$为多项式,使得$k \geq 2m$和$i \in \left\lbrace 1,2 \right\rbrace $。本文考虑Diophantine方程$$E\ :\ x^2-P(t)_i^{\pm}y^2-2P'(t)_i^{\pm}x+4 P(t)_i^{\pm} y +Q(t)_i^{\pm}=0.$$的整数解的个数,推广了a . Tekcan和a . Chandoul等人的结果。我们还推导了一类Pell方程整数解的递推关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solutions of Some Quadratic Diophantine Equations
Let $P(t)_i^{\pm}=t^{2k} \pm i t^m$ be a non square polynomial and $Q(t)_i^{\pm}=4k^2t^{4k-2}+i^2m^2t^{2m-2} \pm 4imkt^{2k+m-2} -4t^{2k} \mp 4it^m -1$ be a polynomial, such that $k \geq 2m$ and $i \in \left\lbrace 1,2 \right\rbrace $. In this paper, we consider the number of integer solutions of Diophantine equation $$E\ :\ x^2-P(t)_i^{\pm}y^2-2P'(t)_i^{\pm}x+4 P(t)_i^{\pm} y +Q(t)_i^{\pm}=0.$$ We extend a previous results given by A. Tekcan and A. Chandoul et al. . We also derive some recurrence relations on the integer solutions of a Pell equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信