验证五次多项式恒等式的交换代数的推导与表示

IF 1 Q1 MATHEMATICS
Hamed Ouédraogo, Abdoulaye Dembega, André Conseibo
{"title":"验证五次多项式恒等式的交换代数的推导与表示","authors":"Hamed Ouédraogo, Abdoulaye Dembega, André Conseibo","doi":"10.29020/nybg.ejpam.v16i4.4924","DOIUrl":null,"url":null,"abstract":"In this paper we study a class of commutative non associative algebras satisfying a polynomial identity of degree five. We show that under the assumption of the existence of a non-zero idempotent, any commutative algebra verifying such an identity admits a Peirce decomposition. Using this decomposition we proceeded to the study of the derivations and representations of algebras of this class.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivations and Representations of Commutative Algebras Verifying a Polynomial Identity of Degree Five\",\"authors\":\"Hamed Ouédraogo, Abdoulaye Dembega, André Conseibo\",\"doi\":\"10.29020/nybg.ejpam.v16i4.4924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study a class of commutative non associative algebras satisfying a polynomial identity of degree five. We show that under the assumption of the existence of a non-zero idempotent, any commutative algebra verifying such an identity admits a Peirce decomposition. Using this decomposition we proceeded to the study of the derivations and representations of algebras of this class.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v16i4.4924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i4.4924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类满足五次多项式恒等式的可交换非结合代数。我们证明了在非零幂等存在的假设下,任何验证这种恒等式的交换代数都允许Peirce分解。利用这种分解,我们开始研究这类代数的导数和表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derivations and Representations of Commutative Algebras Verifying a Polynomial Identity of Degree Five
In this paper we study a class of commutative non associative algebras satisfying a polynomial identity of degree five. We show that under the assumption of the existence of a non-zero idempotent, any commutative algebra verifying such an identity admits a Peirce decomposition. Using this decomposition we proceeded to the study of the derivations and representations of algebras of this class.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信