Hamed Ouédraogo, Abdoulaye Dembega, André Conseibo
{"title":"验证五次多项式恒等式的交换代数的推导与表示","authors":"Hamed Ouédraogo, Abdoulaye Dembega, André Conseibo","doi":"10.29020/nybg.ejpam.v16i4.4924","DOIUrl":null,"url":null,"abstract":"In this paper we study a class of commutative non associative algebras satisfying a polynomial identity of degree five. We show that under the assumption of the existence of a non-zero idempotent, any commutative algebra verifying such an identity admits a Peirce decomposition. Using this decomposition we proceeded to the study of the derivations and representations of algebras of this class.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivations and Representations of Commutative Algebras Verifying a Polynomial Identity of Degree Five\",\"authors\":\"Hamed Ouédraogo, Abdoulaye Dembega, André Conseibo\",\"doi\":\"10.29020/nybg.ejpam.v16i4.4924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study a class of commutative non associative algebras satisfying a polynomial identity of degree five. We show that under the assumption of the existence of a non-zero idempotent, any commutative algebra verifying such an identity admits a Peirce decomposition. Using this decomposition we proceeded to the study of the derivations and representations of algebras of this class.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v16i4.4924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i4.4924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Derivations and Representations of Commutative Algebras Verifying a Polynomial Identity of Degree Five
In this paper we study a class of commutative non associative algebras satisfying a polynomial identity of degree five. We show that under the assumption of the existence of a non-zero idempotent, any commutative algebra verifying such an identity admits a Peirce decomposition. Using this decomposition we proceeded to the study of the derivations and representations of algebras of this class.