{"title":"一个用于实时数据库上的词、句子、方面和文档级情感分析的混合多源数据融合","authors":"Monika Agrawal, Nageswara Rao Moparthi","doi":"10.3233/jifs-234076","DOIUrl":null,"url":null,"abstract":"Sentiment analysis (SA)at the sentence, aspect, and document levels determines the sentiment of particular aspect phrases in a given sentence. Due to their capacity to extract sentiment information from text in aspect-level sentiment classification, neural networks (NNs) have achieved significant success. Generally speaking, sufficiently sizable training corpora are necessary for NNs to be effective. The performance of NN-based systems is reduced by the small size of the aspect-level corpora currently available. In this research, we suggest a gated bilateral recurrent neural network (G-Bi-RNN) as a foundation for multi-source data fusion, their system offers sentiment information that several sources. We develop a uniform architecture specifically to include information from sentimental lexicons, including aspect- and sentence-level corpora. To further provide aspect-specific phrase representations for SA, we use G-Bi-RNN, a deep bilateral Transformer-based pre-trained language model. We assess our methods using SemEval 2014 datasets for laptops and restaurants. According to experimental findings, our method consistently outperforms cutting-edge techniques on all datasets. We use a number of well-known aspect-level SA datasets to assess the efficacy of our model. Experiments show that when compared to baseline models, the suggested model can produce state-of-the-art results.","PeriodicalId":54795,"journal":{"name":"Journal of Intelligent & Fuzzy Systems","volume":"49 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid multi-source data fusion for word, sentence, aspect, and document-level sentiment analysis on real-time databases\",\"authors\":\"Monika Agrawal, Nageswara Rao Moparthi\",\"doi\":\"10.3233/jifs-234076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment analysis (SA)at the sentence, aspect, and document levels determines the sentiment of particular aspect phrases in a given sentence. Due to their capacity to extract sentiment information from text in aspect-level sentiment classification, neural networks (NNs) have achieved significant success. Generally speaking, sufficiently sizable training corpora are necessary for NNs to be effective. The performance of NN-based systems is reduced by the small size of the aspect-level corpora currently available. In this research, we suggest a gated bilateral recurrent neural network (G-Bi-RNN) as a foundation for multi-source data fusion, their system offers sentiment information that several sources. We develop a uniform architecture specifically to include information from sentimental lexicons, including aspect- and sentence-level corpora. To further provide aspect-specific phrase representations for SA, we use G-Bi-RNN, a deep bilateral Transformer-based pre-trained language model. We assess our methods using SemEval 2014 datasets for laptops and restaurants. According to experimental findings, our method consistently outperforms cutting-edge techniques on all datasets. We use a number of well-known aspect-level SA datasets to assess the efficacy of our model. Experiments show that when compared to baseline models, the suggested model can produce state-of-the-art results.\",\"PeriodicalId\":54795,\"journal\":{\"name\":\"Journal of Intelligent & Fuzzy Systems\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jifs-234076\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jifs-234076","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A hybrid multi-source data fusion for word, sentence, aspect, and document-level sentiment analysis on real-time databases
Sentiment analysis (SA)at the sentence, aspect, and document levels determines the sentiment of particular aspect phrases in a given sentence. Due to their capacity to extract sentiment information from text in aspect-level sentiment classification, neural networks (NNs) have achieved significant success. Generally speaking, sufficiently sizable training corpora are necessary for NNs to be effective. The performance of NN-based systems is reduced by the small size of the aspect-level corpora currently available. In this research, we suggest a gated bilateral recurrent neural network (G-Bi-RNN) as a foundation for multi-source data fusion, their system offers sentiment information that several sources. We develop a uniform architecture specifically to include information from sentimental lexicons, including aspect- and sentence-level corpora. To further provide aspect-specific phrase representations for SA, we use G-Bi-RNN, a deep bilateral Transformer-based pre-trained language model. We assess our methods using SemEval 2014 datasets for laptops and restaurants. According to experimental findings, our method consistently outperforms cutting-edge techniques on all datasets. We use a number of well-known aspect-level SA datasets to assess the efficacy of our model. Experiments show that when compared to baseline models, the suggested model can produce state-of-the-art results.
期刊介绍:
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.