Bahar Shahidi, Bradley Anderson, Angel Ordaz, David B. Berry, Severin Ruoss, Vinko Zlomislic, R. Todd Allen, Steven R. Garfin, Mazda Farshad, Simon Schenk, Samuel R. Ward
{"title":"腰椎病手术患者的脊柱旁肌肉对急性阻力运动缺乏肌源性反应","authors":"Bahar Shahidi, Bradley Anderson, Angel Ordaz, David B. Berry, Severin Ruoss, Vinko Zlomislic, R. Todd Allen, Steven R. Garfin, Mazda Farshad, Simon Schenk, Samuel R. Ward","doi":"10.1002/jsp2.1291","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Lumbar spine pathology (LSP) is a common source of low back or leg pain, and paraspinal muscle in these patients demonstrates fatty and fibrotic infiltration, and cellular degeneration that do not reverse with exercise-based rehabilitation. However, it is unclear of this lack of response is due to insufficient exercise stimulus, or an inability to mount a growth response. The purpose of this study was to compare paraspinal muscle gene expression between individuals with LSP who do and do not undergo an acute bout of resistance exercise.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Paraspinal muscle biopsies were obtained from 64 individuals with LSP undergoing spinal surgery. Eight participants performed an acute bout of machine-based lumbar extension resistance exercise preoperatively. Gene expression for 42 genes associated with adipogenic/metabolic, atrophic, fibrogenic, inflammatory, and myogenic pathways was measured, and differential expression between exercised and non-exercised groups was evaluated for (a) the full cohort, and (b) an age, gender, acuity, and etiology matched sub-cohort. Principal components analyses were used to identify gene expression clustering across clinical phenotypes.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The exercised cohort demonstrated upregulation of inflammatory gene IL1B, inhibition of extracellular matrix components (increased MMP3&9, decreased TIMP1&3, COL1A1) and metabolic/adipogenic genes (FABP4, PPARD, WNT10B), and downregulation of myogenic (MYOD, ANKRD2B) and atrophic (FOXO3) genes compared to the non-exercised cohort, with similar patterns in the matched sub-analysis. There were no clinical phenotypes significantly associated with gene expression profiles.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>An acute bout of moderate-high intensity resistance exercise did not result in upregulation of myogenic genes in individuals with LSP. The response was characterized by mixed metabolic and fibrotic gene expression, upregulation of inflammation, and downregulation of myogenesis.</p>\n </section>\n </div>","PeriodicalId":14876,"journal":{"name":"JOR Spine","volume":"7 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jsp2.1291","citationCount":"0","resultStr":"{\"title\":\"Paraspinal muscles in individuals undergoing surgery for lumbar spine pathology lack a myogenic response to an acute bout of resistance exercise\",\"authors\":\"Bahar Shahidi, Bradley Anderson, Angel Ordaz, David B. Berry, Severin Ruoss, Vinko Zlomislic, R. Todd Allen, Steven R. Garfin, Mazda Farshad, Simon Schenk, Samuel R. Ward\",\"doi\":\"10.1002/jsp2.1291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Lumbar spine pathology (LSP) is a common source of low back or leg pain, and paraspinal muscle in these patients demonstrates fatty and fibrotic infiltration, and cellular degeneration that do not reverse with exercise-based rehabilitation. However, it is unclear of this lack of response is due to insufficient exercise stimulus, or an inability to mount a growth response. The purpose of this study was to compare paraspinal muscle gene expression between individuals with LSP who do and do not undergo an acute bout of resistance exercise.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Paraspinal muscle biopsies were obtained from 64 individuals with LSP undergoing spinal surgery. Eight participants performed an acute bout of machine-based lumbar extension resistance exercise preoperatively. Gene expression for 42 genes associated with adipogenic/metabolic, atrophic, fibrogenic, inflammatory, and myogenic pathways was measured, and differential expression between exercised and non-exercised groups was evaluated for (a) the full cohort, and (b) an age, gender, acuity, and etiology matched sub-cohort. Principal components analyses were used to identify gene expression clustering across clinical phenotypes.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The exercised cohort demonstrated upregulation of inflammatory gene IL1B, inhibition of extracellular matrix components (increased MMP3&9, decreased TIMP1&3, COL1A1) and metabolic/adipogenic genes (FABP4, PPARD, WNT10B), and downregulation of myogenic (MYOD, ANKRD2B) and atrophic (FOXO3) genes compared to the non-exercised cohort, with similar patterns in the matched sub-analysis. There were no clinical phenotypes significantly associated with gene expression profiles.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>An acute bout of moderate-high intensity resistance exercise did not result in upregulation of myogenic genes in individuals with LSP. The response was characterized by mixed metabolic and fibrotic gene expression, upregulation of inflammation, and downregulation of myogenesis.</p>\\n </section>\\n </div>\",\"PeriodicalId\":14876,\"journal\":{\"name\":\"JOR Spine\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jsp2.1291\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOR Spine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jsp2.1291\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOR Spine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsp2.1291","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
Paraspinal muscles in individuals undergoing surgery for lumbar spine pathology lack a myogenic response to an acute bout of resistance exercise
Background
Lumbar spine pathology (LSP) is a common source of low back or leg pain, and paraspinal muscle in these patients demonstrates fatty and fibrotic infiltration, and cellular degeneration that do not reverse with exercise-based rehabilitation. However, it is unclear of this lack of response is due to insufficient exercise stimulus, or an inability to mount a growth response. The purpose of this study was to compare paraspinal muscle gene expression between individuals with LSP who do and do not undergo an acute bout of resistance exercise.
Methods
Paraspinal muscle biopsies were obtained from 64 individuals with LSP undergoing spinal surgery. Eight participants performed an acute bout of machine-based lumbar extension resistance exercise preoperatively. Gene expression for 42 genes associated with adipogenic/metabolic, atrophic, fibrogenic, inflammatory, and myogenic pathways was measured, and differential expression between exercised and non-exercised groups was evaluated for (a) the full cohort, and (b) an age, gender, acuity, and etiology matched sub-cohort. Principal components analyses were used to identify gene expression clustering across clinical phenotypes.
Results
The exercised cohort demonstrated upregulation of inflammatory gene IL1B, inhibition of extracellular matrix components (increased MMP3&9, decreased TIMP1&3, COL1A1) and metabolic/adipogenic genes (FABP4, PPARD, WNT10B), and downregulation of myogenic (MYOD, ANKRD2B) and atrophic (FOXO3) genes compared to the non-exercised cohort, with similar patterns in the matched sub-analysis. There were no clinical phenotypes significantly associated with gene expression profiles.
Conclusion
An acute bout of moderate-high intensity resistance exercise did not result in upregulation of myogenic genes in individuals with LSP. The response was characterized by mixed metabolic and fibrotic gene expression, upregulation of inflammation, and downregulation of myogenesis.