非线性Klein-Gordon方程的分岔和精确行波解

IF 1 Q1 MATHEMATICS
Meraa Arab
{"title":"非线性Klein-Gordon方程的分岔和精确行波解","authors":"Meraa Arab","doi":"10.29020/nybg.ejpam.v16i4.4971","DOIUrl":null,"url":null,"abstract":"This paper focuses on the construction of traveling wave solutions to the nonlinear Klein--Gordon equation by employing the qualitative theory of planar dynamical systems. Based on this theory, we analytically study the existence of periodic, kink (anti-kink), and solitary wave solutions. We then attempt to construct such solutions. For this purpose, we apply a well-known traveling wave solution to convert the nonlinear Klein--Gordon equation into an ordinary differential equation that can be written as a one-dimensional Hamiltonian system. The qualitative theory is applied to investigate and describe phase portraits of the Hamiltonian system. Based on the bifurcation constraints on the system parameters, we integrate the conserved quantities to build new wave solutions that can be classified into periodic, kink (anti-kink), and solitary wave solutions. Some of the obtained solutions are clarified graphically and their connection with the phase orbits is derived.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation and Exact Traveling Wave Solutions for the Nonlinear Klein-Gordon Equation\",\"authors\":\"Meraa Arab\",\"doi\":\"10.29020/nybg.ejpam.v16i4.4971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the construction of traveling wave solutions to the nonlinear Klein--Gordon equation by employing the qualitative theory of planar dynamical systems. Based on this theory, we analytically study the existence of periodic, kink (anti-kink), and solitary wave solutions. We then attempt to construct such solutions. For this purpose, we apply a well-known traveling wave solution to convert the nonlinear Klein--Gordon equation into an ordinary differential equation that can be written as a one-dimensional Hamiltonian system. The qualitative theory is applied to investigate and describe phase portraits of the Hamiltonian system. Based on the bifurcation constraints on the system parameters, we integrate the conserved quantities to build new wave solutions that can be classified into periodic, kink (anti-kink), and solitary wave solutions. Some of the obtained solutions are clarified graphically and their connection with the phase orbits is derived.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v16i4.4971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i4.4971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用平面动力系统的定性理论,研究了非线性Klein—Gordon方程的行波解的构造。基于这一理论,我们解析地研究了周期、扭结(反扭结)和孤波解的存在性。然后我们尝试构造这样的解。为此,我们应用一个著名的行波解将非线性Klein- Gordon方程转换为可写成一维哈密顿系统的常微分方程。应用定性理论研究和描述了哈密顿系统的相象。基于系统参数的分岔约束,我们对守恒量进行了积分,构建了周期波解、扭结(反扭结)波解和孤波解。用图形说明了得到的一些解,并推导了它们与相轨道的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcation and Exact Traveling Wave Solutions for the Nonlinear Klein-Gordon Equation
This paper focuses on the construction of traveling wave solutions to the nonlinear Klein--Gordon equation by employing the qualitative theory of planar dynamical systems. Based on this theory, we analytically study the existence of periodic, kink (anti-kink), and solitary wave solutions. We then attempt to construct such solutions. For this purpose, we apply a well-known traveling wave solution to convert the nonlinear Klein--Gordon equation into an ordinary differential equation that can be written as a one-dimensional Hamiltonian system. The qualitative theory is applied to investigate and describe phase portraits of the Hamiltonian system. Based on the bifurcation constraints on the system parameters, we integrate the conserved quantities to build new wave solutions that can be classified into periodic, kink (anti-kink), and solitary wave solutions. Some of the obtained solutions are clarified graphically and their connection with the phase orbits is derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信