{"title":"交叉积型的广义自反结构性质","authors":"Eltiyeb Ali","doi":"10.29020/nybg.ejpam.v16i4.4918","DOIUrl":null,"url":null,"abstract":"Let $R$ be a ring and $M$ be a monoid with a twisting map $f : M \\times M \\rightarrow U(R)$ and an action map $\\omega : M \\rightarrow Aut(R)$. The objective of our work is to extend the reflexive properties of rings by focusing on the crossed product $R \\ast M$ over $R$. In order to achieve this, we introduce and examine the concept of strongly $CM$-reflexive rings. Although a monoid $M$ and any ring $R$ with an idempotent are not strongly $CM$-reflexive in general, we prove that $R$ is strongly $CM$-reflexive under some additional conditions. Moreover, we prove that if $R$ is a left $p.q.$-Baer (semiprime, left $APP$-ring, respectively), then $R$ is strongly $CM$-reflexive. Additionally, for a right Ore ring $R$ with a classical right quotient ring $Q$, we prove $R$ is strongly $CM$-reflexive if and only if $Q$ is strongly $CM$-reflexive. Finally, we discuss some relevant results on crossed products.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Reflexive Structures Properties of Crossed Products Type\",\"authors\":\"Eltiyeb Ali\",\"doi\":\"10.29020/nybg.ejpam.v16i4.4918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $R$ be a ring and $M$ be a monoid with a twisting map $f : M \\\\times M \\\\rightarrow U(R)$ and an action map $\\\\omega : M \\\\rightarrow Aut(R)$. The objective of our work is to extend the reflexive properties of rings by focusing on the crossed product $R \\\\ast M$ over $R$. In order to achieve this, we introduce and examine the concept of strongly $CM$-reflexive rings. Although a monoid $M$ and any ring $R$ with an idempotent are not strongly $CM$-reflexive in general, we prove that $R$ is strongly $CM$-reflexive under some additional conditions. Moreover, we prove that if $R$ is a left $p.q.$-Baer (semiprime, left $APP$-ring, respectively), then $R$ is strongly $CM$-reflexive. Additionally, for a right Ore ring $R$ with a classical right quotient ring $Q$, we prove $R$ is strongly $CM$-reflexive if and only if $Q$ is strongly $CM$-reflexive. Finally, we discuss some relevant results on crossed products.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v16i4.4918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i4.4918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
假设$R$是一个环,$M$是一个具有扭曲图$f : M \times M \rightarrow U(R)$和动作图$\omega : M \rightarrow Aut(R)$的单oid。我们工作的目标是通过关注$R \ast M$ / $R$的交叉积来扩展环的自反性。为了达到这个目的,我们引入并检验了强$CM$ -自反环的概念。虽然一般情况下一元群$M$和任何幂等环$R$都不是强$CM$自反的,但我们证明了$R$在一些附加条件下是强$CM$自反的。此外,我们证明了如果$R$是左$p.q.$ -Baer(半素数,左$APP$ -环),则$R$是强$CM$ -自反的。此外,对于具有经典右商环$Q$的右矿环$R$,我们证明了$R$是强$CM$ -自反的当且仅当$Q$是强$CM$ -自反的。最后讨论了交叉产物的一些相关结果。
Generalized Reflexive Structures Properties of Crossed Products Type
Let $R$ be a ring and $M$ be a monoid with a twisting map $f : M \times M \rightarrow U(R)$ and an action map $\omega : M \rightarrow Aut(R)$. The objective of our work is to extend the reflexive properties of rings by focusing on the crossed product $R \ast M$ over $R$. In order to achieve this, we introduce and examine the concept of strongly $CM$-reflexive rings. Although a monoid $M$ and any ring $R$ with an idempotent are not strongly $CM$-reflexive in general, we prove that $R$ is strongly $CM$-reflexive under some additional conditions. Moreover, we prove that if $R$ is a left $p.q.$-Baer (semiprime, left $APP$-ring, respectively), then $R$ is strongly $CM$-reflexive. Additionally, for a right Ore ring $R$ with a classical right quotient ring $Q$, we prove $R$ is strongly $CM$-reflexive if and only if $Q$ is strongly $CM$-reflexive. Finally, we discuss some relevant results on crossed products.