Junyi Liu, Xujun Chen, Song Ji, Heng Huang, Xi Chen, Qunzhang Tu
{"title":"基于凯恩法的多浮体铰连接动力响应时域预测模型","authors":"Junyi Liu, Xujun Chen, Song Ji, Heng Huang, Xi Chen, Qunzhang Tu","doi":"10.1115/1.4063944","DOIUrl":null,"url":null,"abstract":"Abstract A two-dimensional model to estimate the hydrodynamic response of hinged multiple floating body system in time domain is established based on the Kane method. The reduced Kane equations applicable to the dynamic response of multi-floating body system with hinges are firstly deduced. The issue of hinge constraint in the system is addressed by defining the corresponding generalised speeds as zeros, while the wave actions are considered based on the potential flow theory. Then the corresponding calculation program is developed prior to undertaking the model test. Verification of the Kane-based model and the veracity of the program developed are performed through a series of contrastive analyses on a hinged floating bridge in various cases including regular waves, moving loads and their combinations. The predictions obtained by the proposed model show satisfactory agreements with the model test measurements. The related results indicate that the motion responses of the first pontoon are greatest in hinged floating bridge, and its motion amplitudes descend nonlinearly with the increment of wave frequency. The time-history motion responses of hinged multi-floating bodies in the middle present saddle shapes with some fluctuations as a whole under the combined effect of wave and moving loads. The Kane-based model is convenient to analyse the dynamic characteristics of a hinged multi-floating body system in regular waves, and it could be further extended to consider the effects of irregular waves, inhomogeneous sea conditions as well as the nonlinear connections on the system.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":"730 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A time domain model to predict dynamic response of multiple floating bodies connected with hinges based on the Kane method\",\"authors\":\"Junyi Liu, Xujun Chen, Song Ji, Heng Huang, Xi Chen, Qunzhang Tu\",\"doi\":\"10.1115/1.4063944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A two-dimensional model to estimate the hydrodynamic response of hinged multiple floating body system in time domain is established based on the Kane method. The reduced Kane equations applicable to the dynamic response of multi-floating body system with hinges are firstly deduced. The issue of hinge constraint in the system is addressed by defining the corresponding generalised speeds as zeros, while the wave actions are considered based on the potential flow theory. Then the corresponding calculation program is developed prior to undertaking the model test. Verification of the Kane-based model and the veracity of the program developed are performed through a series of contrastive analyses on a hinged floating bridge in various cases including regular waves, moving loads and their combinations. The predictions obtained by the proposed model show satisfactory agreements with the model test measurements. The related results indicate that the motion responses of the first pontoon are greatest in hinged floating bridge, and its motion amplitudes descend nonlinearly with the increment of wave frequency. The time-history motion responses of hinged multi-floating bodies in the middle present saddle shapes with some fluctuations as a whole under the combined effect of wave and moving loads. The Kane-based model is convenient to analyse the dynamic characteristics of a hinged multi-floating body system in regular waves, and it could be further extended to consider the effects of irregular waves, inhomogeneous sea conditions as well as the nonlinear connections on the system.\",\"PeriodicalId\":50106,\"journal\":{\"name\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"volume\":\"730 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063944\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063944","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
A time domain model to predict dynamic response of multiple floating bodies connected with hinges based on the Kane method
Abstract A two-dimensional model to estimate the hydrodynamic response of hinged multiple floating body system in time domain is established based on the Kane method. The reduced Kane equations applicable to the dynamic response of multi-floating body system with hinges are firstly deduced. The issue of hinge constraint in the system is addressed by defining the corresponding generalised speeds as zeros, while the wave actions are considered based on the potential flow theory. Then the corresponding calculation program is developed prior to undertaking the model test. Verification of the Kane-based model and the veracity of the program developed are performed through a series of contrastive analyses on a hinged floating bridge in various cases including regular waves, moving loads and their combinations. The predictions obtained by the proposed model show satisfactory agreements with the model test measurements. The related results indicate that the motion responses of the first pontoon are greatest in hinged floating bridge, and its motion amplitudes descend nonlinearly with the increment of wave frequency. The time-history motion responses of hinged multi-floating bodies in the middle present saddle shapes with some fluctuations as a whole under the combined effect of wave and moving loads. The Kane-based model is convenient to analyse the dynamic characteristics of a hinged multi-floating body system in regular waves, and it could be further extended to consider the effects of irregular waves, inhomogeneous sea conditions as well as the nonlinear connections on the system.
期刊介绍:
The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events.
Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.