天然原料废水处理生态安全过滤装置的研究

Q3 Engineering
O. R Byelyanska, K. S Krasnikov, V. H Nakonechnyi
{"title":"天然原料废水处理生态安全过滤装置的研究","authors":"O. R Byelyanska, K. S Krasnikov, V. H Nakonechnyi","doi":"10.33271/nvngu/2023-5/128","DOIUrl":null,"url":null,"abstract":"Purpose. To develop a new eco-safe filtration plant for wastewater treatment based on natural and secondary raw materials, which will allow rational use of natural resources with further mathematical modeling of hydrodynamics of mixing treated wastewater in bioponds to predict removal of residual concentrations from the filter. Methodology. A complex of modern methods of theoretical and experimental research was used to solve the tasks. Concentration of pollutants was determined using methods of atomic adsorption spectroscopy, titrimetry and gravimetric methods, as well as pyrometric analysis. A laboratory installation was created, which included a receiving tank, a filter column, and a tank for collecting purified wastewater. Prediction of distribution and mixing of treated effluent in bioponds was carried out using mathematical and computer software. Findings. An environmentally safe filtration plant (containing sand, fallen leaves of linden, poplar, and plastic residues separated by a polymer mesh) was created to purify wastewater from suspended substances and nitrates. Kinetics of changes in concentration of suspended solids and nitrates in urban wastewater were studied. When using the filtration plant, concentration of suspended solids decreased by 85–92 %. Concentration of nitrates in purified water processed with such a plant is reduced from 12 to 0.25–0.05 mg/dm3. A mathematical model concerning distribution of purified water in a biopond was obtained, which allows predicting possible migration distributions of residual concentrations in purified water during its natural movement downstream. Originality. For the first time, influence of the species origin of fallen leaves on the performance indicators of wastewater filtration plant of urban sewage treatment constructions was investigated, which made it possible to substantiate a new way of disposal of this type of waste. For the first time, it was established that wastewater treatment using an eco-safe filtration plant based on natural and secondary raw materials, containing layers of sand, fallen oak, linden, and poplar leaves, gives an opportunity to reduce contents of suspended solids in wastewater by 1.5 times of the maximum permissible concentration; and such treatment also reduces concentration of nitrates by 4 times from the initial level. Pollutants from wastewater are mechanically fixed in pockets (microcracks, cracks) of fallen leaves, formed during drying of leaves, which is explained by hardening of intercellular spaces with formation of a specific geometry of holes. For the first time, mathematical modeling of purified wastewater movement in a biological pond with a complex geometry was performed, which allows estimating the concentration of the pollutant at its outlet from the pond. Practical value. The created environmentally safe wastewater filtration plant gives an opportunity to perform not only filtering, but also an effective biological purification of wastewater from nitrates on the surface of layers of fallen leaves. The wide use of the proposed installation will allow attracting plastic of polyethylene bottles used in everyday life as a secondary raw material. Based on the proposed mathematical model of movement of purified liquid containing residual concentrations of pollutants, it is possible to carry out qualitative forecasting and optimization of the process of cascade wastewater treatment at industrial and economic enterprises.","PeriodicalId":19101,"journal":{"name":"Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu","volume":"58 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on an eco-safe filtration plant for wastewater treatment made of natural raw materials\",\"authors\":\"O. R Byelyanska, K. S Krasnikov, V. H Nakonechnyi\",\"doi\":\"10.33271/nvngu/2023-5/128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose. To develop a new eco-safe filtration plant for wastewater treatment based on natural and secondary raw materials, which will allow rational use of natural resources with further mathematical modeling of hydrodynamics of mixing treated wastewater in bioponds to predict removal of residual concentrations from the filter. Methodology. A complex of modern methods of theoretical and experimental research was used to solve the tasks. Concentration of pollutants was determined using methods of atomic adsorption spectroscopy, titrimetry and gravimetric methods, as well as pyrometric analysis. A laboratory installation was created, which included a receiving tank, a filter column, and a tank for collecting purified wastewater. Prediction of distribution and mixing of treated effluent in bioponds was carried out using mathematical and computer software. Findings. An environmentally safe filtration plant (containing sand, fallen leaves of linden, poplar, and plastic residues separated by a polymer mesh) was created to purify wastewater from suspended substances and nitrates. Kinetics of changes in concentration of suspended solids and nitrates in urban wastewater were studied. When using the filtration plant, concentration of suspended solids decreased by 85–92 %. Concentration of nitrates in purified water processed with such a plant is reduced from 12 to 0.25–0.05 mg/dm3. A mathematical model concerning distribution of purified water in a biopond was obtained, which allows predicting possible migration distributions of residual concentrations in purified water during its natural movement downstream. Originality. For the first time, influence of the species origin of fallen leaves on the performance indicators of wastewater filtration plant of urban sewage treatment constructions was investigated, which made it possible to substantiate a new way of disposal of this type of waste. For the first time, it was established that wastewater treatment using an eco-safe filtration plant based on natural and secondary raw materials, containing layers of sand, fallen oak, linden, and poplar leaves, gives an opportunity to reduce contents of suspended solids in wastewater by 1.5 times of the maximum permissible concentration; and such treatment also reduces concentration of nitrates by 4 times from the initial level. Pollutants from wastewater are mechanically fixed in pockets (microcracks, cracks) of fallen leaves, formed during drying of leaves, which is explained by hardening of intercellular spaces with formation of a specific geometry of holes. For the first time, mathematical modeling of purified wastewater movement in a biological pond with a complex geometry was performed, which allows estimating the concentration of the pollutant at its outlet from the pond. Practical value. The created environmentally safe wastewater filtration plant gives an opportunity to perform not only filtering, but also an effective biological purification of wastewater from nitrates on the surface of layers of fallen leaves. The wide use of the proposed installation will allow attracting plastic of polyethylene bottles used in everyday life as a secondary raw material. Based on the proposed mathematical model of movement of purified liquid containing residual concentrations of pollutants, it is possible to carry out qualitative forecasting and optimization of the process of cascade wastewater treatment at industrial and economic enterprises.\",\"PeriodicalId\":19101,\"journal\":{\"name\":\"Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu\",\"volume\":\"58 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33271/nvngu/2023-5/128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33271/nvngu/2023-5/128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

目的。开发一种基于天然和二次原料的新型生态安全的废水处理过滤装置,这将允许合理利用自然资源,并进一步对生物池塘中混合处理过的废水的流体动力学进行数学建模,以预测过滤器中残留浓度的去除。方法。为了解决这些问题,采用了一系列现代理论和实验研究方法。采用原子吸附光谱法、滴定法、重量法和热分析法测定污染物浓度。设计了一个实验室装置,包括一个接收罐、一个过滤柱和一个收集纯化废水的罐。利用数学和计算机软件对生物池中处理废水的分布和混合进行了预测。发现。一个环境安全的过滤工厂(含有沙子、菩提树落叶、杨树和塑料残留物,由聚合物网分开)被创造出来,以净化废水中的悬浮物和硝酸盐。研究了城市污水中悬浮物和硝酸盐浓度的变化动力学。采用过滤装置后,悬浮物浓度降低85 ~ 92%。用这种装置处理的纯净水中硝酸盐的浓度从12毫克/立方米降低到0.25-0.05毫克/立方米。建立了纯净水在生物池中分布的数学模型,该模型可以预测纯净水在下游自然运动过程中残留浓度的可能迁移分布。创意。首次研究了落叶种类来源对城市污水处理工程污水过滤装置性能指标的影响,为这类废弃物的处理提供了新的途径。首次确定,使用基于天然和二次原料的生态安全过滤装置进行废水处理,其中包含砂层,栎树,椴树和杨树叶,使废水中的悬浮固体含量降低到最大允许浓度的1.5倍;该处理还使硝酸盐浓度较初始水平降低了4倍。废水中的污染物被机械地固定在落叶的口袋(微裂缝,裂缝)中,这些口袋是在树叶干燥过程中形成的,这可以用细胞间空间硬化和形成特定几何形状的孔来解释。首次对具有复杂几何形状的生物池塘中净化废水的运动进行了数学建模,从而可以估计池塘出口的污染物浓度。实用价值。所创建的环境安全废水过滤工厂不仅提供了过滤的机会,而且还提供了有效的生物净化废水的机会,这些废水来自落叶层表面的硝酸盐。拟议装置的广泛使用将允许吸引日常生活中使用的聚乙烯瓶作为次要原材料。基于所提出的含污染物残留浓度的纯化液运动数学模型,可以对工企废水梯级处理过程进行定性预测和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on an eco-safe filtration plant for wastewater treatment made of natural raw materials
Purpose. To develop a new eco-safe filtration plant for wastewater treatment based on natural and secondary raw materials, which will allow rational use of natural resources with further mathematical modeling of hydrodynamics of mixing treated wastewater in bioponds to predict removal of residual concentrations from the filter. Methodology. A complex of modern methods of theoretical and experimental research was used to solve the tasks. Concentration of pollutants was determined using methods of atomic adsorption spectroscopy, titrimetry and gravimetric methods, as well as pyrometric analysis. A laboratory installation was created, which included a receiving tank, a filter column, and a tank for collecting purified wastewater. Prediction of distribution and mixing of treated effluent in bioponds was carried out using mathematical and computer software. Findings. An environmentally safe filtration plant (containing sand, fallen leaves of linden, poplar, and plastic residues separated by a polymer mesh) was created to purify wastewater from suspended substances and nitrates. Kinetics of changes in concentration of suspended solids and nitrates in urban wastewater were studied. When using the filtration plant, concentration of suspended solids decreased by 85–92 %. Concentration of nitrates in purified water processed with such a plant is reduced from 12 to 0.25–0.05 mg/dm3. A mathematical model concerning distribution of purified water in a biopond was obtained, which allows predicting possible migration distributions of residual concentrations in purified water during its natural movement downstream. Originality. For the first time, influence of the species origin of fallen leaves on the performance indicators of wastewater filtration plant of urban sewage treatment constructions was investigated, which made it possible to substantiate a new way of disposal of this type of waste. For the first time, it was established that wastewater treatment using an eco-safe filtration plant based on natural and secondary raw materials, containing layers of sand, fallen oak, linden, and poplar leaves, gives an opportunity to reduce contents of suspended solids in wastewater by 1.5 times of the maximum permissible concentration; and such treatment also reduces concentration of nitrates by 4 times from the initial level. Pollutants from wastewater are mechanically fixed in pockets (microcracks, cracks) of fallen leaves, formed during drying of leaves, which is explained by hardening of intercellular spaces with formation of a specific geometry of holes. For the first time, mathematical modeling of purified wastewater movement in a biological pond with a complex geometry was performed, which allows estimating the concentration of the pollutant at its outlet from the pond. Practical value. The created environmentally safe wastewater filtration plant gives an opportunity to perform not only filtering, but also an effective biological purification of wastewater from nitrates on the surface of layers of fallen leaves. The wide use of the proposed installation will allow attracting plastic of polyethylene bottles used in everyday life as a secondary raw material. Based on the proposed mathematical model of movement of purified liquid containing residual concentrations of pollutants, it is possible to carry out qualitative forecasting and optimization of the process of cascade wastewater treatment at industrial and economic enterprises.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
148
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信