{"title":"光晶格量子计算机的里程碑","authors":"David Ehrenstein","doi":"10.1103/physics.16.s122","DOIUrl":null,"url":null,"abstract":"U ltracold atoms trapped in an optical lattice—a periodic array of laser-produced trapping sites—could potentially be used to perform quantum computations and should be scalable, according to experts. But until now researchers had failed to accomplish a critical step: quantum mechanically entangling more than two atoms at a time. Now Jian-Wei Pan of the University of Science and Technology of China and his colleagues have entangled one-dimensional chains of ten atoms and two-dimensional groups of eight atoms with high reliability [1]. The team has also demonstrated control and imaging of the states of the atoms with single-atom resolution [1]. The results show that several of the required building blocks needed for optical-lattice-based quantum processors are now practical.","PeriodicalId":20136,"journal":{"name":"Physics","volume":"184 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Milestone for Optical-Lattice Quantum Computer\",\"authors\":\"David Ehrenstein\",\"doi\":\"10.1103/physics.16.s122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"U ltracold atoms trapped in an optical lattice—a periodic array of laser-produced trapping sites—could potentially be used to perform quantum computations and should be scalable, according to experts. But until now researchers had failed to accomplish a critical step: quantum mechanically entangling more than two atoms at a time. Now Jian-Wei Pan of the University of Science and Technology of China and his colleagues have entangled one-dimensional chains of ten atoms and two-dimensional groups of eight atoms with high reliability [1]. The team has also demonstrated control and imaging of the states of the atoms with single-atom resolution [1]. The results show that several of the required building blocks needed for optical-lattice-based quantum processors are now practical.\",\"PeriodicalId\":20136,\"journal\":{\"name\":\"Physics\",\"volume\":\"184 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physics.16.s122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physics.16.s122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
U ltracold atoms trapped in an optical lattice—a periodic array of laser-produced trapping sites—could potentially be used to perform quantum computations and should be scalable, according to experts. But until now researchers had failed to accomplish a critical step: quantum mechanically entangling more than two atoms at a time. Now Jian-Wei Pan of the University of Science and Technology of China and his colleagues have entangled one-dimensional chains of ten atoms and two-dimensional groups of eight atoms with high reliability [1]. The team has also demonstrated control and imaging of the states of the atoms with single-atom resolution [1]. The results show that several of the required building blocks needed for optical-lattice-based quantum processors are now practical.