Vi Nguyen, Quyen Tran, Faisal Altarazi, Thanh Tran
{"title":"中小服装制造业任务分配与最优劳动力成本的二元整数公式","authors":"Vi Nguyen, Quyen Tran, Faisal Altarazi, Thanh Tran","doi":"10.3390/designs7040084","DOIUrl":null,"url":null,"abstract":"In small apparel manufacturing, unit price determination is often based on production duration given by customers and design complexity rather than information relating to internal labor resources. However, labor expertise and skills are critical factors that outweigh the machinery and technology in small and medium apparel companies. The quality of the product greatly depends on the experience and delicacy of the tailors. Using data on labor skill and wage levels in the planning process will benefit human resource utilization, increasing productivity, and profits effectively. This paper proposes a general mathematical model for task allocation and cost optimization for small and medium apparel companies. The model handles task allocation and cost minimization problems that must ensure processing time requirements and balance workloads for operators. The developed model tests two case studies in a published paper. The results prove that although the proposed model is simple, it has high applicability and efficiency in solving allocation optimization problems. The authors then integrate the formulations into a Standalone desktop app in the MATLAB “App designer” module. With a standalone desktop app, end users can enjoy the application. This app has a user-friendly design. Users unfamiliar with computers or planners with no background in programming can use the app to tackle similar optimization problems. The proposed mathematical model can further expand to include more complex issues in apparel companies and can also be a good reference for other fields.","PeriodicalId":53150,"journal":{"name":"Designs","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binary Integer Formulations for Task Allocation and Optimal Labor Cost in Small and Medium Apparel Manufacturing\",\"authors\":\"Vi Nguyen, Quyen Tran, Faisal Altarazi, Thanh Tran\",\"doi\":\"10.3390/designs7040084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In small apparel manufacturing, unit price determination is often based on production duration given by customers and design complexity rather than information relating to internal labor resources. However, labor expertise and skills are critical factors that outweigh the machinery and technology in small and medium apparel companies. The quality of the product greatly depends on the experience and delicacy of the tailors. Using data on labor skill and wage levels in the planning process will benefit human resource utilization, increasing productivity, and profits effectively. This paper proposes a general mathematical model for task allocation and cost optimization for small and medium apparel companies. The model handles task allocation and cost minimization problems that must ensure processing time requirements and balance workloads for operators. The developed model tests two case studies in a published paper. The results prove that although the proposed model is simple, it has high applicability and efficiency in solving allocation optimization problems. The authors then integrate the formulations into a Standalone desktop app in the MATLAB “App designer” module. With a standalone desktop app, end users can enjoy the application. This app has a user-friendly design. Users unfamiliar with computers or planners with no background in programming can use the app to tackle similar optimization problems. The proposed mathematical model can further expand to include more complex issues in apparel companies and can also be a good reference for other fields.\",\"PeriodicalId\":53150,\"journal\":{\"name\":\"Designs\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/designs7040084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/designs7040084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Binary Integer Formulations for Task Allocation and Optimal Labor Cost in Small and Medium Apparel Manufacturing
In small apparel manufacturing, unit price determination is often based on production duration given by customers and design complexity rather than information relating to internal labor resources. However, labor expertise and skills are critical factors that outweigh the machinery and technology in small and medium apparel companies. The quality of the product greatly depends on the experience and delicacy of the tailors. Using data on labor skill and wage levels in the planning process will benefit human resource utilization, increasing productivity, and profits effectively. This paper proposes a general mathematical model for task allocation and cost optimization for small and medium apparel companies. The model handles task allocation and cost minimization problems that must ensure processing time requirements and balance workloads for operators. The developed model tests two case studies in a published paper. The results prove that although the proposed model is simple, it has high applicability and efficiency in solving allocation optimization problems. The authors then integrate the formulations into a Standalone desktop app in the MATLAB “App designer” module. With a standalone desktop app, end users can enjoy the application. This app has a user-friendly design. Users unfamiliar with computers or planners with no background in programming can use the app to tackle similar optimization problems. The proposed mathematical model can further expand to include more complex issues in apparel companies and can also be a good reference for other fields.