暴露于含硫化氢环境中的低合金钢中镍的作用。第一部分:开路电位下的沟槽形成

IF 1.1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Corrosion Pub Date : 2023-10-11 DOI:10.5006/4436
Dannisa R. Chalfoun, Mariano A. Kappes, Teresa E. Perez, José L. Otegui, Mariano Iannuzzi
{"title":"暴露于含硫化氢环境中的低合金钢中镍的作用。第一部分:开路电位下的沟槽形成","authors":"Dannisa R. Chalfoun, Mariano A. Kappes, Teresa E. Perez, José L. Otegui, Mariano Iannuzzi","doi":"10.5006/4436","DOIUrl":null,"url":null,"abstract":"ABSTRACT The nickel content in low alloy steels (LAS) for oil and gas exploration and production is limited to a maximum of 1 wt.% according to ANSI/NACE MR 0175/ISO 15156. This restriction is imposed to avoid sulfide stress cracking (SSC) in sour (H2S-containing) environments. In this work, the effect of Ni on SSC of LAS was studied independently of other alloying elements. For this purpose, quenched and tempered steels heat treated to a yield strength of 610 MPa with a Ni content below and above the 1 wt.% threshold were evaluated at the open circuit potential (OCP) in unstressed specimens, and in slow strain rate tests (SSRT) at room temperature. Thiosulfate was used as a surrogate of H2S, according to the Tsujikawa method. It is concluded that Ni contributes to the stabilization of the sulfide films that form on the steel's surface at OCP. The rupture of this film due to tensile stress promotes the nucleation of elongated deep pits, referred to as trenches, which can act as sulfide stress crack initiators. Trenches were observed exclusively in stressed, Ni-containing specimens. Moreover, trenches' morphology, dimensions, and distribution varied with the Ni content in the steels. For the steels studied in this work, the Ni effect on trenching persisted below the 1 wt.% threshold.","PeriodicalId":10717,"journal":{"name":"Corrosion","volume":"12 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Nickel in Low Alloy Steels exposed to H2S-containing environments. Part I: Trench Formation at the Open Circuit Potential\",\"authors\":\"Dannisa R. Chalfoun, Mariano A. Kappes, Teresa E. Perez, José L. Otegui, Mariano Iannuzzi\",\"doi\":\"10.5006/4436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The nickel content in low alloy steels (LAS) for oil and gas exploration and production is limited to a maximum of 1 wt.% according to ANSI/NACE MR 0175/ISO 15156. This restriction is imposed to avoid sulfide stress cracking (SSC) in sour (H2S-containing) environments. In this work, the effect of Ni on SSC of LAS was studied independently of other alloying elements. For this purpose, quenched and tempered steels heat treated to a yield strength of 610 MPa with a Ni content below and above the 1 wt.% threshold were evaluated at the open circuit potential (OCP) in unstressed specimens, and in slow strain rate tests (SSRT) at room temperature. Thiosulfate was used as a surrogate of H2S, according to the Tsujikawa method. It is concluded that Ni contributes to the stabilization of the sulfide films that form on the steel's surface at OCP. The rupture of this film due to tensile stress promotes the nucleation of elongated deep pits, referred to as trenches, which can act as sulfide stress crack initiators. Trenches were observed exclusively in stressed, Ni-containing specimens. Moreover, trenches' morphology, dimensions, and distribution varied with the Ni content in the steels. For the steels studied in this work, the Ni effect on trenching persisted below the 1 wt.% threshold.\",\"PeriodicalId\":10717,\"journal\":{\"name\":\"Corrosion\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5006/4436\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5006/4436","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

根据ANSI/NACE MR 0175/ISO 15156,石油和天然气勘探和生产用低合金钢(LAS)的镍含量最高限制为1wt .%。这种限制是为了避免在酸性(含硫化氢)环境中发生硫化物应力开裂(SSC)。本研究独立于其他合金元素,研究了Ni对LAS SSC的影响。为此,在无应力试样的开路电位(OCP)和室温下的慢应变速率试验(SSRT)中,对热处理至屈服强度为610 MPa、Ni含量低于或高于1 wt.%阈值的淬火和回火钢进行了评估。根据Tsujikawa的方法,硫代硫酸盐被用作H2S的替代品。结果表明,镍有助于钢表面在OCP下形成的硫化物膜的稳定。由于拉伸应力,该薄膜的破裂促进了细长深坑的成核,称为沟,这可以作为硫化物应力裂纹的引发剂。仅在应力、含镍试样中观察到沟槽。此外,沟槽的形态、尺寸和分布随钢中Ni含量的变化而变化。对于本研究中所研究的钢,Ni对沟槽的影响持续低于1 wt.%的阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Role of Nickel in Low Alloy Steels exposed to H2S-containing environments. Part I: Trench Formation at the Open Circuit Potential
ABSTRACT The nickel content in low alloy steels (LAS) for oil and gas exploration and production is limited to a maximum of 1 wt.% according to ANSI/NACE MR 0175/ISO 15156. This restriction is imposed to avoid sulfide stress cracking (SSC) in sour (H2S-containing) environments. In this work, the effect of Ni on SSC of LAS was studied independently of other alloying elements. For this purpose, quenched and tempered steels heat treated to a yield strength of 610 MPa with a Ni content below and above the 1 wt.% threshold were evaluated at the open circuit potential (OCP) in unstressed specimens, and in slow strain rate tests (SSRT) at room temperature. Thiosulfate was used as a surrogate of H2S, according to the Tsujikawa method. It is concluded that Ni contributes to the stabilization of the sulfide films that form on the steel's surface at OCP. The rupture of this film due to tensile stress promotes the nucleation of elongated deep pits, referred to as trenches, which can act as sulfide stress crack initiators. Trenches were observed exclusively in stressed, Ni-containing specimens. Moreover, trenches' morphology, dimensions, and distribution varied with the Ni content in the steels. For the steels studied in this work, the Ni effect on trenching persisted below the 1 wt.% threshold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Corrosion
Corrosion MATERIALS SCIENCE, MULTIDISCIPLINARY-METALLURGY & METALLURGICAL ENGINEERING
CiteScore
2.80
自引率
12.50%
发文量
97
审稿时长
3 months
期刊介绍: CORROSION is the premier research journal featuring peer-reviewed technical articles from the world’s top researchers and provides a permanent record of progress in the science and technology of corrosion prevention and control. The scope of the journal includes the latest developments in areas of corrosion metallurgy, mechanisms, predictors, cracking (sulfide stress, stress corrosion, hydrogen-induced), passivation, and CO2 corrosion. 70+ years and over 7,100 peer-reviewed articles with advances in corrosion science and engineering have been published in CORROSION. The journal publishes seven article types – original articles, invited critical reviews, technical notes, corrosion communications fast-tracked for rapid publication, special research topic issues, research letters of yearly annual conference student poster sessions, and scientific investigations of field corrosion processes. CORROSION, the Journal of Science and Engineering, serves as an important communication platform for academics, researchers, technical libraries, and universities. Articles considered for CORROSION should have significant permanent value and should accomplish at least one of the following objectives: • Contribute awareness of corrosion phenomena, • Advance understanding of fundamental process, and/or • Further the knowledge of techniques and practices used to reduce corrosion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信