Cuihong Xue, Jingli Jia, Ming Yu, Gang Yan, Yingchun Guo, Yuehao Liu
{"title":"基于分层记忆序列网络的连续手语识别","authors":"Cuihong Xue, Jingli Jia, Ming Yu, Gang Yan, Yingchun Guo, Yuehao Liu","doi":"10.1049/cvi2.12240","DOIUrl":null,"url":null,"abstract":"<p>With the goal of solving the problem of feature extractors lacking strong supervision training and insufficient time information concerning single-sequence model learning, a hierarchical sequence memory network with a multi-level iterative optimisation strategy is proposed for continuous sign language recognition. This method uses the spatial-temporal fusion convolution network (STFC-Net) to extract the spatial-temporal information of RGB and Optical flow video frames to obtain the multi-modal visual features of a sign language video. Then, in order to enhance the temporal relationships of visual feature maps, the hierarchical memory sequence network is used to capture local utterance features and global context dependencies across time dimensions to obtain sequence features. Finally, the decoder decodes the final sentence sequence. In order to enhance the feature extractor, the authors adopted a multi-level iterative optimisation strategy to fine-tune STFC-Net and the utterance feature extractor. The experimental results on the RWTH-Phoenix-Weather multi-signer 2014 dataset and the Chinese sign language dataset show the effectiveness and superiority of this method.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 2","pages":"247-259"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12240","citationCount":"0","resultStr":"{\"title\":\"Continuous sign language recognition based on hierarchical memory sequence network\",\"authors\":\"Cuihong Xue, Jingli Jia, Ming Yu, Gang Yan, Yingchun Guo, Yuehao Liu\",\"doi\":\"10.1049/cvi2.12240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the goal of solving the problem of feature extractors lacking strong supervision training and insufficient time information concerning single-sequence model learning, a hierarchical sequence memory network with a multi-level iterative optimisation strategy is proposed for continuous sign language recognition. This method uses the spatial-temporal fusion convolution network (STFC-Net) to extract the spatial-temporal information of RGB and Optical flow video frames to obtain the multi-modal visual features of a sign language video. Then, in order to enhance the temporal relationships of visual feature maps, the hierarchical memory sequence network is used to capture local utterance features and global context dependencies across time dimensions to obtain sequence features. Finally, the decoder decodes the final sentence sequence. In order to enhance the feature extractor, the authors adopted a multi-level iterative optimisation strategy to fine-tune STFC-Net and the utterance feature extractor. The experimental results on the RWTH-Phoenix-Weather multi-signer 2014 dataset and the Chinese sign language dataset show the effectiveness and superiority of this method.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 2\",\"pages\":\"247-259\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12240\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12240\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12240","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Continuous sign language recognition based on hierarchical memory sequence network
With the goal of solving the problem of feature extractors lacking strong supervision training and insufficient time information concerning single-sequence model learning, a hierarchical sequence memory network with a multi-level iterative optimisation strategy is proposed for continuous sign language recognition. This method uses the spatial-temporal fusion convolution network (STFC-Net) to extract the spatial-temporal information of RGB and Optical flow video frames to obtain the multi-modal visual features of a sign language video. Then, in order to enhance the temporal relationships of visual feature maps, the hierarchical memory sequence network is used to capture local utterance features and global context dependencies across time dimensions to obtain sequence features. Finally, the decoder decodes the final sentence sequence. In order to enhance the feature extractor, the authors adopted a multi-level iterative optimisation strategy to fine-tune STFC-Net and the utterance feature extractor. The experimental results on the RWTH-Phoenix-Weather multi-signer 2014 dataset and the Chinese sign language dataset show the effectiveness and superiority of this method.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf