系统工程和水资源管理:需要更密切的关系

IF 1.6 3区 工程技术 Q4 ENGINEERING, INDUSTRIAL
Neil S. Grigg
{"title":"系统工程和水资源管理:需要更密切的关系","authors":"Neil S. Grigg","doi":"10.1002/sys.21725","DOIUrl":null,"url":null,"abstract":"Abstract Systems engineering can be applied in a broad spectrum of sectors, but only its analysis tool has been applied in the field of water resources management. Because systems engineering has a separate community of practice from water resources, there is little crosstalk between the two fields. As a result, the systems engineering functions that support planning, design, production, procurement, and customer support are not being applied to water systems. Meanwhile, water systems exhibit complexities that have generated a separate field named Integrated Water Resources Management that continues to confuse its followers after several decades. Its methods are applied to a broad spectrum of water issues that affect multiple stakeholders with conflicting interests and involve distinct subsystems, such as water supply or hydropower, as well as combinations of them. Use of systems analysis for such water issues began six decades ago, but it is still a work in progress. Evolving methods of systems engineering offer new possibilities to address problems of water resources management, but they must extend beyond systems analysis, which belongs to multiple disciplines. Examples show possibilities to apply systems engineering methods when water issues exhibit attributes of engineered systems and do not involve social and environmental complexities that cannot be included in system boundaries. Collaboration among systems engineering and water resources management would offer a fertile test bed to advance both fields.","PeriodicalId":54439,"journal":{"name":"Systems Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systems engineering and water resources management: A closer relationship is needed\",\"authors\":\"Neil S. Grigg\",\"doi\":\"10.1002/sys.21725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Systems engineering can be applied in a broad spectrum of sectors, but only its analysis tool has been applied in the field of water resources management. Because systems engineering has a separate community of practice from water resources, there is little crosstalk between the two fields. As a result, the systems engineering functions that support planning, design, production, procurement, and customer support are not being applied to water systems. Meanwhile, water systems exhibit complexities that have generated a separate field named Integrated Water Resources Management that continues to confuse its followers after several decades. Its methods are applied to a broad spectrum of water issues that affect multiple stakeholders with conflicting interests and involve distinct subsystems, such as water supply or hydropower, as well as combinations of them. Use of systems analysis for such water issues began six decades ago, but it is still a work in progress. Evolving methods of systems engineering offer new possibilities to address problems of water resources management, but they must extend beyond systems analysis, which belongs to multiple disciplines. Examples show possibilities to apply systems engineering methods when water issues exhibit attributes of engineered systems and do not involve social and environmental complexities that cannot be included in system boundaries. Collaboration among systems engineering and water resources management would offer a fertile test bed to advance both fields.\",\"PeriodicalId\":54439,\"journal\":{\"name\":\"Systems Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sys.21725\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sys.21725","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

系统工程可以应用于广泛的领域,但只有它的分析工具在水资源管理领域得到了应用。由于系统工程与水资源有一个独立的实践社区,这两个领域之间几乎没有相互影响。因此,支持计划、设计、生产、采购和客户支持的系统工程功能不能应用于水系统。与此同时,水系统表现出的复杂性产生了一个名为综合水资源管理的单独领域,几十年后,这个领域仍然让它的追随者感到困惑。它的方法适用于广泛的水问题,这些问题影响到利益冲突的多个利益相关者,并涉及不同的子系统,如供水或水电,以及它们的组合。对这类水问题的系统分析始于60年前,但它仍在进行中。不断发展的系统工程方法为解决水资源管理问题提供了新的可能性,但它们必须超越属于多学科的系统分析。当水问题表现出工程系统的属性,并且不涉及系统边界不能包括的社会和环境复杂性时,示例显示了应用系统工程方法的可能性。系统工程和水资源管理之间的合作将为推进这两个领域提供一个肥沃的试验台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systems engineering and water resources management: A closer relationship is needed
Abstract Systems engineering can be applied in a broad spectrum of sectors, but only its analysis tool has been applied in the field of water resources management. Because systems engineering has a separate community of practice from water resources, there is little crosstalk between the two fields. As a result, the systems engineering functions that support planning, design, production, procurement, and customer support are not being applied to water systems. Meanwhile, water systems exhibit complexities that have generated a separate field named Integrated Water Resources Management that continues to confuse its followers after several decades. Its methods are applied to a broad spectrum of water issues that affect multiple stakeholders with conflicting interests and involve distinct subsystems, such as water supply or hydropower, as well as combinations of them. Use of systems analysis for such water issues began six decades ago, but it is still a work in progress. Evolving methods of systems engineering offer new possibilities to address problems of water resources management, but they must extend beyond systems analysis, which belongs to multiple disciplines. Examples show possibilities to apply systems engineering methods when water issues exhibit attributes of engineered systems and do not involve social and environmental complexities that cannot be included in system boundaries. Collaboration among systems engineering and water resources management would offer a fertile test bed to advance both fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems Engineering
Systems Engineering 工程技术-工程:工业
CiteScore
5.10
自引率
20.00%
发文量
0
审稿时长
6 months
期刊介绍: Systems Engineering is a discipline whose responsibility it is to create and operate technologically enabled systems that satisfy stakeholder needs throughout their life cycle. Systems engineers reduce ambiguity by clearly defining stakeholder needs and customer requirements, they focus creativity by developing a system’s architecture and design and they manage the system’s complexity over time. Considerations taken into account by systems engineers include, among others, quality, cost and schedule, risk and opportunity under uncertainty, manufacturing and realization, performance and safety during operations, training and support, as well as disposal and recycling at the end of life. The journal welcomes original submissions in the field of Systems Engineering as defined above, but also encourages contributions that take an even broader perspective including the design and operation of systems-of-systems, the application of Systems Engineering to enterprises and complex socio-technical systems, the identification, selection and development of systems engineers as well as the evolution of systems and systems-of-systems over their entire lifecycle. Systems Engineering integrates all the disciplines and specialty groups into a coordinated team effort forming a structured development process that proceeds from concept to realization to operation. Increasingly important topics in Systems Engineering include the role of executable languages and models of systems, the concurrent use of physical and virtual prototyping, as well as the deployment of agile processes. Systems Engineering considers both the business and the technical needs of all stakeholders with the goal of providing a quality product that meets the user needs. Systems Engineering may be applied not only to products and services in the private sector but also to public infrastructures and socio-technical systems whose precise boundaries are often challenging to define.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信