{"title":"饱和系统和等级-度量覆盖半径","authors":"Matteo Bonini, Martino Borello, Eimear Byrne","doi":"10.1007/s10801-023-01269-9","DOIUrl":null,"url":null,"abstract":"Abstract We introduce the concept of a rank-saturating system and outline its correspondence to a rank-metric code with a given covering radius. We consider the problem of finding the value of $$s_{q^m/q}(k,\\rho )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>s</mml:mi> <mml:mrow> <mml:msup> <mml:mi>q</mml:mi> <mml:mi>m</mml:mi> </mml:msup> <mml:mo>/</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ρ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , which is the minimum $$\\mathbb {F}_q$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:math> -dimension of a q -system in $$\\mathbb {F}_{q^m}^k$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>F</mml:mi> <mml:mrow> <mml:msup> <mml:mi>q</mml:mi> <mml:mi>m</mml:mi> </mml:msup> </mml:mrow> <mml:mi>k</mml:mi> </mml:msubsup> </mml:math> that is rank- $$\\rho $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ρ</mml:mi> </mml:math> -saturating. This is equivalent to the covering problem in the rank metric. We obtain upper and lower bounds on $$s_{q^m/q}(k,\\rho )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>s</mml:mi> <mml:mrow> <mml:msup> <mml:mi>q</mml:mi> <mml:mi>m</mml:mi> </mml:msup> <mml:mo>/</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ρ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> and evaluate it for certain values of k and $$\\rho $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ρ</mml:mi> </mml:math> . We give constructions of rank- $$\\rho $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ρ</mml:mi> </mml:math> -saturating systems suggested from geometry.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Saturating systems and the rank-metric covering radius\",\"authors\":\"Matteo Bonini, Martino Borello, Eimear Byrne\",\"doi\":\"10.1007/s10801-023-01269-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We introduce the concept of a rank-saturating system and outline its correspondence to a rank-metric code with a given covering radius. We consider the problem of finding the value of $$s_{q^m/q}(k,\\\\rho )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>s</mml:mi> <mml:mrow> <mml:msup> <mml:mi>q</mml:mi> <mml:mi>m</mml:mi> </mml:msup> <mml:mo>/</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ρ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , which is the minimum $$\\\\mathbb {F}_q$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msub> <mml:mi>F</mml:mi> <mml:mi>q</mml:mi> </mml:msub> </mml:math> -dimension of a q -system in $$\\\\mathbb {F}_{q^m}^k$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msubsup> <mml:mi>F</mml:mi> <mml:mrow> <mml:msup> <mml:mi>q</mml:mi> <mml:mi>m</mml:mi> </mml:msup> </mml:mrow> <mml:mi>k</mml:mi> </mml:msubsup> </mml:math> that is rank- $$\\\\rho $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>ρ</mml:mi> </mml:math> -saturating. This is equivalent to the covering problem in the rank metric. We obtain upper and lower bounds on $$s_{q^m/q}(k,\\\\rho )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>s</mml:mi> <mml:mrow> <mml:msup> <mml:mi>q</mml:mi> <mml:mi>m</mml:mi> </mml:msup> <mml:mo>/</mml:mo> <mml:mi>q</mml:mi> </mml:mrow> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>,</mml:mo> <mml:mi>ρ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> and evaluate it for certain values of k and $$\\\\rho $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>ρ</mml:mi> </mml:math> . We give constructions of rank- $$\\\\rho $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>ρ</mml:mi> </mml:math> -saturating systems suggested from geometry.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-023-01269-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10801-023-01269-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
摘要引入了秩饱和系统的概念,并概述了它与给定覆盖半径的秩度量码的对应关系。我们考虑寻找$$s_{q^m/q}(k,\rho )$$ s q m / q (k, ρ)的值的问题,它是$$\mathbb {F}_{q^m}^k$$ F q m k中秩- $$\rho $$ ρ -饱和的q -系统的最小$$\mathbb {F}_q$$ F q -维。这相当于秩度量中的覆盖问题。我们得到了$$s_{q^m/q}(k,\rho )$$ s q m / q (k, ρ)的上界和下界,并对k和$$\rho $$ ρ的某些值进行了计算。我们给出了秩- $$\rho $$ ρ -饱和系统的构造。
Saturating systems and the rank-metric covering radius
Abstract We introduce the concept of a rank-saturating system and outline its correspondence to a rank-metric code with a given covering radius. We consider the problem of finding the value of $$s_{q^m/q}(k,\rho )$$ sqm/q(k,ρ) , which is the minimum $$\mathbb {F}_q$$ Fq -dimension of a q -system in $$\mathbb {F}_{q^m}^k$$ Fqmk that is rank- $$\rho $$ ρ -saturating. This is equivalent to the covering problem in the rank metric. We obtain upper and lower bounds on $$s_{q^m/q}(k,\rho )$$ sqm/q(k,ρ) and evaluate it for certain values of k and $$\rho $$ ρ . We give constructions of rank- $$\rho $$ ρ -saturating systems suggested from geometry.