Pavel Ctibor, Libor Straka, Josef Sedláček, František Lukáč
{"title":"高压成形氟化锂烧结体的介电性能","authors":"Pavel Ctibor, Libor Straka, Josef Sedláček, František Lukáč","doi":"10.3390/ceramics6040118","DOIUrl":null,"url":null,"abstract":"High-pressure forming at 300 MPa and room temperature was applied before the sintering of a lithium fluoride (LiF) powder. The as-fired samples were tested as dielectrics and showed very interesting characteristics. The best sample, sintered at 750 °C for 8 h, had a relative permittivity of 12.1 and a loss tangent of 0.0006, both of them frequency-independent and temperature-independent up to at least 150 °C, and moreover, the volume DC resistivity was 27.4 × 1012 Ωm at room temperature. These parameters are comparable with oxide ceramics, processed at temperatures over 1300 °C, as for example, aluminum dioxide (Al2O3) or Y3Al5O12 (YAG). LiF material is advantageous because of its very low sintering temperature, which is only about one-half of typical oxide ceramic dielectrics.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":"26 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dielectric Properties of Compacts Sintered after High-Pressure Forming of Lithium Fluoride\",\"authors\":\"Pavel Ctibor, Libor Straka, Josef Sedláček, František Lukáč\",\"doi\":\"10.3390/ceramics6040118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-pressure forming at 300 MPa and room temperature was applied before the sintering of a lithium fluoride (LiF) powder. The as-fired samples were tested as dielectrics and showed very interesting characteristics. The best sample, sintered at 750 °C for 8 h, had a relative permittivity of 12.1 and a loss tangent of 0.0006, both of them frequency-independent and temperature-independent up to at least 150 °C, and moreover, the volume DC resistivity was 27.4 × 1012 Ωm at room temperature. These parameters are comparable with oxide ceramics, processed at temperatures over 1300 °C, as for example, aluminum dioxide (Al2O3) or Y3Al5O12 (YAG). LiF material is advantageous because of its very low sintering temperature, which is only about one-half of typical oxide ceramic dielectrics.\",\"PeriodicalId\":33263,\"journal\":{\"name\":\"Ceramics-Switzerland\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramics-Switzerland\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ceramics6040118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics-Switzerland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ceramics6040118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Dielectric Properties of Compacts Sintered after High-Pressure Forming of Lithium Fluoride
High-pressure forming at 300 MPa and room temperature was applied before the sintering of a lithium fluoride (LiF) powder. The as-fired samples were tested as dielectrics and showed very interesting characteristics. The best sample, sintered at 750 °C for 8 h, had a relative permittivity of 12.1 and a loss tangent of 0.0006, both of them frequency-independent and temperature-independent up to at least 150 °C, and moreover, the volume DC resistivity was 27.4 × 1012 Ωm at room temperature. These parameters are comparable with oxide ceramics, processed at temperatures over 1300 °C, as for example, aluminum dioxide (Al2O3) or Y3Al5O12 (YAG). LiF material is advantageous because of its very low sintering temperature, which is only about one-half of typical oxide ceramic dielectrics.