原位聚合将聚合物基体填充到季铵化支化聚乙烯亚胺@纤维素气凝胶中制备致密阴离子交换膜

IF 2.1 3区 化学 Q3 POLYMER SCIENCE
Wenting Lan, Dawei Dong, Minghua Zhang, Yafei Xiao, Zhixin Zhao, Zhaojie Yang, Ya Cao, Minmin Fan
{"title":"原位聚合将聚合物基体填充到季铵化支化聚乙烯亚胺@纤维素气凝胶中制备致密阴离子交换膜","authors":"Wenting Lan, Dawei Dong, Minghua Zhang, Yafei Xiao, Zhixin Zhao, Zhaojie Yang, Ya Cao, Minmin Fan","doi":"10.1080/10601325.2023.2257758","DOIUrl":null,"url":null,"abstract":"AbstractIn order to construct interconnected three-dimensional ion transport structures within anion exchange membranes (AEMs), we proposed the idea of preparing AEMs by filling the aerogel three-dimensional network skeleton by in-situ polymerization. First, quaternized branched polyethyleneimine (QBPEI) with a large number of quaternary ammonium groups was cross-linked with cellulose to construct an aerogel with a three-dimensional network. Then, poly(4-vinylbenzyl chloride) (PVBC) was filled into the aerogel network through in-situ polymerization. Finally, dense AEMs with internal three-dimensional ion transport networks were prepared by hot pressing PVBC/QBPEI@cellulose. The prepared AEMs have low ion exchange capacity (IEC) values and high ionic conductivities, with the membrane with the best overall performance (IEC value of 1.58 meq./g) having a maximum hydroxide conductivity of 38.88 mS/cm at 80 °C. In addition, the optimized membrane has good chemical and dimensional stability, and the maximum power density of the fuel cell assembled based on it is 46.32 mW/cm2. Although the performance of the prepared composite membranes needs to be further improved due to the preparation process, the design idea in this work provides a feasible solution for the construction of continuous ion fast transport channels in AEMs.Keywords: anion exchange membranequaternized branched polyethyleneiminecellulose aerogelhot pressingpoly(4-vinylbenzyl chloride) Associated contentSupporting information is available free of charge.Author contributionsWenting Lan: Data curation, Writing- Original draft preparation; Dawei Dong: Writing- Reviewing and Editing; Minghua Zhang: Methodology and Software; Yafei Xiao: Conceptualization and Methodology; Zhixin Zhao: Visualization, Investigation; Zhaojie Yang: Software and Validation; Ya Cao: Supervision and Data curation; Minmin Fan: Writing- Reviewing and Editing.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was financially supported by the National Natural Science Foundation of China [No. 51803136], Sichuan Science and Technology Program [No. 2021YFG0245] and the Fundamental Research Funds for the Central Universities [No. 2022SCUH0001].","PeriodicalId":50159,"journal":{"name":"Journal of Macromolecular Science Part A-Pure and Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of dense anion exchange membranes by filling polymer matrix into quaternized branched polyethyleneimine @cellulose aerogel through in-situ polymerization\",\"authors\":\"Wenting Lan, Dawei Dong, Minghua Zhang, Yafei Xiao, Zhixin Zhao, Zhaojie Yang, Ya Cao, Minmin Fan\",\"doi\":\"10.1080/10601325.2023.2257758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractIn order to construct interconnected three-dimensional ion transport structures within anion exchange membranes (AEMs), we proposed the idea of preparing AEMs by filling the aerogel three-dimensional network skeleton by in-situ polymerization. First, quaternized branched polyethyleneimine (QBPEI) with a large number of quaternary ammonium groups was cross-linked with cellulose to construct an aerogel with a three-dimensional network. Then, poly(4-vinylbenzyl chloride) (PVBC) was filled into the aerogel network through in-situ polymerization. Finally, dense AEMs with internal three-dimensional ion transport networks were prepared by hot pressing PVBC/QBPEI@cellulose. The prepared AEMs have low ion exchange capacity (IEC) values and high ionic conductivities, with the membrane with the best overall performance (IEC value of 1.58 meq./g) having a maximum hydroxide conductivity of 38.88 mS/cm at 80 °C. In addition, the optimized membrane has good chemical and dimensional stability, and the maximum power density of the fuel cell assembled based on it is 46.32 mW/cm2. Although the performance of the prepared composite membranes needs to be further improved due to the preparation process, the design idea in this work provides a feasible solution for the construction of continuous ion fast transport channels in AEMs.Keywords: anion exchange membranequaternized branched polyethyleneiminecellulose aerogelhot pressingpoly(4-vinylbenzyl chloride) Associated contentSupporting information is available free of charge.Author contributionsWenting Lan: Data curation, Writing- Original draft preparation; Dawei Dong: Writing- Reviewing and Editing; Minghua Zhang: Methodology and Software; Yafei Xiao: Conceptualization and Methodology; Zhixin Zhao: Visualization, Investigation; Zhaojie Yang: Software and Validation; Ya Cao: Supervision and Data curation; Minmin Fan: Writing- Reviewing and Editing.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was financially supported by the National Natural Science Foundation of China [No. 51803136], Sichuan Science and Technology Program [No. 2021YFG0245] and the Fundamental Research Funds for the Central Universities [No. 2022SCUH0001].\",\"PeriodicalId\":50159,\"journal\":{\"name\":\"Journal of Macromolecular Science Part A-Pure and Applied Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Macromolecular Science Part A-Pure and Applied Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10601325.2023.2257758\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Macromolecular Science Part A-Pure and Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10601325.2023.2257758","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要为了在阴离子交换膜(AEMs)内部构建相互连接的三维离子传输结构,我们提出了通过原位聚合填充气凝胶三维网络骨架来制备AEMs的想法。首先,将具有大量季铵基团的季铵化支化聚乙烯亚胺(QBPEI)与纤维素交联,构建具有三维网络的气凝胶。然后,通过原位聚合将聚(4-乙烯基苄基氯)(PVBC)填充到气凝胶网络中。最后,通过热压PVBC/QBPEI@cellulose制备了具有内部三维离子输运网络的致密AEMs。制备的AEMs具有较低的离子交换容量(IEC)值和较高的离子电导率,其中综合性能最好的膜(IEC值为1.58 meq./g)在80℃时的最大氢氧化物电导率为38.88 mS/cm。此外,优化后的膜具有良好的化学稳定性和尺寸稳定性,基于其组装的燃料电池的最大功率密度为46.32 mW/cm2。虽然由于制备工艺的原因,所制备的复合膜的性能还有待进一步提高,但本文的设计思路为AEMs中连续离子快速传输通道的构建提供了可行的解决方案。关键词:阴离子交换膜均匀化支化聚乙烯亚胺纤维素气凝胶热压聚(4-乙烯基氯化苄)相关内容免费提供支持资料兰文婷:数据整理,写作-原稿准备;董大伟:写作-审校;张明华:方法论与软件;肖亚飞:概念与方法论;赵志新:可视化,调查;杨兆杰:软件与验证;曹亚:监管与数据策展;范敏敏:写作-审稿与编辑。披露声明作者未报告潜在的利益冲突。本研究由国家自然科学基金资助[No. 1];四川省科技计划项目[51803136];2021YFG0245]和中央高校基本科研业务费专项基金[No. 2021YFG0245];2022 scuh0001]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of dense anion exchange membranes by filling polymer matrix into quaternized branched polyethyleneimine @cellulose aerogel through in-situ polymerization
AbstractIn order to construct interconnected three-dimensional ion transport structures within anion exchange membranes (AEMs), we proposed the idea of preparing AEMs by filling the aerogel three-dimensional network skeleton by in-situ polymerization. First, quaternized branched polyethyleneimine (QBPEI) with a large number of quaternary ammonium groups was cross-linked with cellulose to construct an aerogel with a three-dimensional network. Then, poly(4-vinylbenzyl chloride) (PVBC) was filled into the aerogel network through in-situ polymerization. Finally, dense AEMs with internal three-dimensional ion transport networks were prepared by hot pressing PVBC/QBPEI@cellulose. The prepared AEMs have low ion exchange capacity (IEC) values and high ionic conductivities, with the membrane with the best overall performance (IEC value of 1.58 meq./g) having a maximum hydroxide conductivity of 38.88 mS/cm at 80 °C. In addition, the optimized membrane has good chemical and dimensional stability, and the maximum power density of the fuel cell assembled based on it is 46.32 mW/cm2. Although the performance of the prepared composite membranes needs to be further improved due to the preparation process, the design idea in this work provides a feasible solution for the construction of continuous ion fast transport channels in AEMs.Keywords: anion exchange membranequaternized branched polyethyleneiminecellulose aerogelhot pressingpoly(4-vinylbenzyl chloride) Associated contentSupporting information is available free of charge.Author contributionsWenting Lan: Data curation, Writing- Original draft preparation; Dawei Dong: Writing- Reviewing and Editing; Minghua Zhang: Methodology and Software; Yafei Xiao: Conceptualization and Methodology; Zhixin Zhao: Visualization, Investigation; Zhaojie Yang: Software and Validation; Ya Cao: Supervision and Data curation; Minmin Fan: Writing- Reviewing and Editing.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was financially supported by the National Natural Science Foundation of China [No. 51803136], Sichuan Science and Technology Program [No. 2021YFG0245] and the Fundamental Research Funds for the Central Universities [No. 2022SCUH0001].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
16.00%
发文量
61
审稿时长
3.1 months
期刊介绍: Journal of Macromolecular Science, Part A: Pure and Applied Chemistry (JMS-PAC) is a necessary resource for academic and industrial scientists and engineers whose interests center on both synthetic and naturally occurring polymers and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信