拧开螺纹消除

IF 0.3 4区 数学 Q1 Arts and Humanities
Gabriele Pulcini
{"title":"拧开螺纹消除","authors":"Gabriele Pulcini","doi":"10.1007/s00153-023-00892-4","DOIUrl":null,"url":null,"abstract":"<div><p>We provide a non-Gentzen, though fully syntactical, cut-elimination algorithm for classical propositional logic. The designed procedure is implemented on <span>\\(\\textsf{GS4}\\)</span>, the one-sided version of Kleene’s sequent system <span>\\(\\textsf{G4}\\)</span>. The algorithm here proposed proves to be more ‘dexterous’ than other, more traditional, Gentzen-style techniques as the size of proofs decreases at each step of reduction. As a corollary result, we show that analyticity always guarantees minimality of the size of <span>\\(\\textsf{GS4}\\)</span>-proofs.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00153-023-00892-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Cut elimination by unthreading\",\"authors\":\"Gabriele Pulcini\",\"doi\":\"10.1007/s00153-023-00892-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We provide a non-Gentzen, though fully syntactical, cut-elimination algorithm for classical propositional logic. The designed procedure is implemented on <span>\\\\(\\\\textsf{GS4}\\\\)</span>, the one-sided version of Kleene’s sequent system <span>\\\\(\\\\textsf{G4}\\\\)</span>. The algorithm here proposed proves to be more ‘dexterous’ than other, more traditional, Gentzen-style techniques as the size of proofs decreases at each step of reduction. As a corollary result, we show that analyticity always guarantees minimality of the size of <span>\\\\(\\\\textsf{GS4}\\\\)</span>-proofs.</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00153-023-00892-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-023-00892-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-023-00892-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

我们为经典命题逻辑提供了一种非根岑(non-Gentzen)、但完全语法化的剪切消除算法。所设计的程序是在(textsf{GS4}\)上实现的,它是克莱因序列系统(sequent system \(\textsf{G4}\))的单边版本。与其他更传统的根岑式技术相比,这里提出的算法被证明是更 "灵巧 "的,因为证明的大小在每一步缩减中都会减小。作为一个推论结果,我们证明了解析性总是保证了 \(\textsf{GS4}\) 证明的最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cut elimination by unthreading

Cut elimination by unthreading

We provide a non-Gentzen, though fully syntactical, cut-elimination algorithm for classical propositional logic. The designed procedure is implemented on \(\textsf{GS4}\), the one-sided version of Kleene’s sequent system \(\textsf{G4}\). The algorithm here proposed proves to be more ‘dexterous’ than other, more traditional, Gentzen-style techniques as the size of proofs decreases at each step of reduction. As a corollary result, we show that analyticity always guarantees minimality of the size of \(\textsf{GS4}\)-proofs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信