帕金森病模型解的周期振荡

Chunhua Feng
{"title":"帕金森病模型解的周期振荡","authors":"Chunhua Feng","doi":"10.9734/arjom/2023/v19i10743","DOIUrl":null,"url":null,"abstract":"In this paper, the oscillation of the solutions for a Parkinson's disease model with multiple delays is discussed. By linearizing the system at the equilibrium point and analyzing the instability of the linearized system, some sufficient conditions to guarantee the existence of periodic oscillation of the solutions for a delayed Parkinson's disease system are obtained. It is found that under suitable conditions on the parameters, time delay affects the stability of the system. The present method does not need to consider a bifurcating equation. Some numerical simulations are provided to illustrate our theoretical prediction.","PeriodicalId":281529,"journal":{"name":"Asian Research Journal of Mathematics","volume":"334 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic Oscillation of the Solutions for a Parkinson's Disease Model\",\"authors\":\"Chunhua Feng\",\"doi\":\"10.9734/arjom/2023/v19i10743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the oscillation of the solutions for a Parkinson's disease model with multiple delays is discussed. By linearizing the system at the equilibrium point and analyzing the instability of the linearized system, some sufficient conditions to guarantee the existence of periodic oscillation of the solutions for a delayed Parkinson's disease system are obtained. It is found that under suitable conditions on the parameters, time delay affects the stability of the system. The present method does not need to consider a bifurcating equation. Some numerical simulations are provided to illustrate our theoretical prediction.\",\"PeriodicalId\":281529,\"journal\":{\"name\":\"Asian Research Journal of Mathematics\",\"volume\":\"334 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Research Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/arjom/2023/v19i10743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Research Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/arjom/2023/v19i10743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一类具有多时滞的帕金森病模型解的振动性。通过在平衡点处对系统进行线性化,分析线性化后系统的不稳定性,得到了时滞帕金森病系统解存在周期振荡的充分条件。研究发现,在适当的参数条件下,时滞会影响系统的稳定性。本方法不需要考虑分岔方程。给出了一些数值模拟来说明我们的理论预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic Oscillation of the Solutions for a Parkinson's Disease Model
In this paper, the oscillation of the solutions for a Parkinson's disease model with multiple delays is discussed. By linearizing the system at the equilibrium point and analyzing the instability of the linearized system, some sufficient conditions to guarantee the existence of periodic oscillation of the solutions for a delayed Parkinson's disease system are obtained. It is found that under suitable conditions on the parameters, time delay affects the stability of the system. The present method does not need to consider a bifurcating equation. Some numerical simulations are provided to illustrate our theoretical prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信