Jorge Navarro, Francesco Buono, Jorge M. Arevalillo
{"title":"一种新的基于Shannon熵的分离指标及分类技术","authors":"Jorge Navarro, Francesco Buono, Jorge M. Arevalillo","doi":"10.1007/s11009-023-10055-w","DOIUrl":null,"url":null,"abstract":"Abstract The purpose is to use Shannon entropy measures to develop classification techniques and an index which estimates the separation of the groups in a finite mixture model. These measures can be applied to machine learning techniques such as discriminant analysis, cluster analysis, exploratory data analysis, etc. If we know the number of groups and we have training samples from each group (supervised learning) the index is used to measure the separation of the groups. Here some entropy measures are used to classify new individuals in one of these groups. If we are not sure about the number of groups (unsupervised learning), the index can be used to determine the optimal number of groups from an entropy (information/uncertainty) criterion. It can also be used to determine the best variables in order to separate the groups. In all the cases we assume that we have absolutely continuous random variables and we use the Shannon entropy based on the probability density function. Theoretical, parametric and non-parametric techniques are proposed to get approximations of these entropy measures in practice. An application to gene selection in a colon cancer discrimination study with a lot of variables is provided as well.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Separation Index and Classification Techniques Based on Shannon Entropy\",\"authors\":\"Jorge Navarro, Francesco Buono, Jorge M. Arevalillo\",\"doi\":\"10.1007/s11009-023-10055-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The purpose is to use Shannon entropy measures to develop classification techniques and an index which estimates the separation of the groups in a finite mixture model. These measures can be applied to machine learning techniques such as discriminant analysis, cluster analysis, exploratory data analysis, etc. If we know the number of groups and we have training samples from each group (supervised learning) the index is used to measure the separation of the groups. Here some entropy measures are used to classify new individuals in one of these groups. If we are not sure about the number of groups (unsupervised learning), the index can be used to determine the optimal number of groups from an entropy (information/uncertainty) criterion. It can also be used to determine the best variables in order to separate the groups. In all the cases we assume that we have absolutely continuous random variables and we use the Shannon entropy based on the probability density function. Theoretical, parametric and non-parametric techniques are proposed to get approximations of these entropy measures in practice. An application to gene selection in a colon cancer discrimination study with a lot of variables is provided as well.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11009-023-10055-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11009-023-10055-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A New Separation Index and Classification Techniques Based on Shannon Entropy
Abstract The purpose is to use Shannon entropy measures to develop classification techniques and an index which estimates the separation of the groups in a finite mixture model. These measures can be applied to machine learning techniques such as discriminant analysis, cluster analysis, exploratory data analysis, etc. If we know the number of groups and we have training samples from each group (supervised learning) the index is used to measure the separation of the groups. Here some entropy measures are used to classify new individuals in one of these groups. If we are not sure about the number of groups (unsupervised learning), the index can be used to determine the optimal number of groups from an entropy (information/uncertainty) criterion. It can also be used to determine the best variables in order to separate the groups. In all the cases we assume that we have absolutely continuous random variables and we use the Shannon entropy based on the probability density function. Theoretical, parametric and non-parametric techniques are proposed to get approximations of these entropy measures in practice. An application to gene selection in a colon cancer discrimination study with a lot of variables is provided as well.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.