从矩阵-向量乘积中恢复结构化矩阵

IF 1.8 3区 数学 Q1 MATHEMATICS
Diana Halikias, Alex Townsend
{"title":"从矩阵-向量乘积中恢复结构化矩阵","authors":"Diana Halikias, Alex Townsend","doi":"10.1002/nla.2531","DOIUrl":null,"url":null,"abstract":"Abstract Can one recover a matrix efficiently from only matrix‐vector products? If so, how many are needed? This article describes algorithms to recover matrices with known structures, such as tridiagonal, Toeplitz, Toeplitz‐like, and hierarchical low‐rank, from matrix‐vector products. In particular, we derive a randomized algorithm for recovering an unknown hierarchical low‐rank matrix from only matrix‐vector products with high probability, where is the rank of the off‐diagonal blocks, and is a small oversampling parameter. We do this by carefully constructing randomized input vectors for our matrix‐vector products that exploit the hierarchical structure of the matrix. While existing algorithms for hierarchical matrix recovery use a recursive “peeling” procedure based on elimination, our approach uses a recursive projection procedure.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":"24 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structured matrix recovery from matrix‐vector products\",\"authors\":\"Diana Halikias, Alex Townsend\",\"doi\":\"10.1002/nla.2531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Can one recover a matrix efficiently from only matrix‐vector products? If so, how many are needed? This article describes algorithms to recover matrices with known structures, such as tridiagonal, Toeplitz, Toeplitz‐like, and hierarchical low‐rank, from matrix‐vector products. In particular, we derive a randomized algorithm for recovering an unknown hierarchical low‐rank matrix from only matrix‐vector products with high probability, where is the rank of the off‐diagonal blocks, and is a small oversampling parameter. We do this by carefully constructing randomized input vectors for our matrix‐vector products that exploit the hierarchical structure of the matrix. While existing algorithms for hierarchical matrix recovery use a recursive “peeling” procedure based on elimination, our approach uses a recursive projection procedure.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2531\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/nla.2531","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

能否从矩阵与向量的乘积中有效地恢复一个矩阵?如果有,需要多少?本文描述了从矩阵-向量乘积中恢复具有已知结构的矩阵的算法,例如三对角线、Toeplitz、Toeplitz类和分层低秩矩阵。特别地,我们推导了一种随机算法,用于从矩阵向量积中以高概率恢复未知的分层低秩矩阵,其中为非对角线块的秩,并且是一个小的过采样参数。我们通过仔细地为我们的矩阵-向量乘积构建随机输入向量来实现这一点,这些矩阵-向量乘积利用了矩阵的层次结构。虽然现有的分层矩阵恢复算法使用基于消去的递归“剥离”过程,但我们的方法使用递归投影过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structured matrix recovery from matrix‐vector products
Abstract Can one recover a matrix efficiently from only matrix‐vector products? If so, how many are needed? This article describes algorithms to recover matrices with known structures, such as tridiagonal, Toeplitz, Toeplitz‐like, and hierarchical low‐rank, from matrix‐vector products. In particular, we derive a randomized algorithm for recovering an unknown hierarchical low‐rank matrix from only matrix‐vector products with high probability, where is the rank of the off‐diagonal blocks, and is a small oversampling parameter. We do this by carefully constructing randomized input vectors for our matrix‐vector products that exploit the hierarchical structure of the matrix. While existing algorithms for hierarchical matrix recovery use a recursive “peeling” procedure based on elimination, our approach uses a recursive projection procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
2.30%
发文量
50
审稿时长
12 months
期刊介绍: Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review. Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects. Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信