{"title":"介观时间分辨荧光分子层析成像的时间点扩展函数和灵敏度函数的蒙特卡罗建模","authors":"S.I. Samarin, A.B. Konovalov, V.V. Vlasov, I.D. Solovyev, A.P. Savitsky, V.V. Tuchin","doi":"10.18287/2412-6179-co-1295","DOIUrl":null,"url":null,"abstract":"The paper describes a TurbidMC code that implements a perturbative Monte Carlo method to model temporal point spread functions and sensitivity functions for time-resolved fluorescence molecular tomography (FMT). The code is aimed at working with a particular FMT method published earlier (Ref. [22]) which defines the specificity of sensitivity function calculation. The method solves the inverse problem first for a generalized fluorescence parameter distribution function and then calculates separate distributions for the fluorophore absorption coefficient and the fluorescence lifetime. The proper operation of the code was verified through a comparison between fluorescence temporal point spread functions from test calculations and data from experiments where a phantom with a fluorophore was scanned with a three-channel probe in the mesoscopic reflectance regime. An example is given on the reconstruction of fluorescence parameter distributions. It shows that the sensitivity functions are calculated correctly.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"28 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monte Carlo modeling of temporal point spread functions and sensitivity functions for mesoscopic time-resolved fluorescence molecular tomography\",\"authors\":\"S.I. Samarin, A.B. Konovalov, V.V. Vlasov, I.D. Solovyev, A.P. Savitsky, V.V. Tuchin\",\"doi\":\"10.18287/2412-6179-co-1295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes a TurbidMC code that implements a perturbative Monte Carlo method to model temporal point spread functions and sensitivity functions for time-resolved fluorescence molecular tomography (FMT). The code is aimed at working with a particular FMT method published earlier (Ref. [22]) which defines the specificity of sensitivity function calculation. The method solves the inverse problem first for a generalized fluorescence parameter distribution function and then calculates separate distributions for the fluorophore absorption coefficient and the fluorescence lifetime. The proper operation of the code was verified through a comparison between fluorescence temporal point spread functions from test calculations and data from experiments where a phantom with a fluorophore was scanned with a three-channel probe in the mesoscopic reflectance regime. An example is given on the reconstruction of fluorescence parameter distributions. It shows that the sensitivity functions are calculated correctly.\",\"PeriodicalId\":46692,\"journal\":{\"name\":\"Computer Optics\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Monte Carlo modeling of temporal point spread functions and sensitivity functions for mesoscopic time-resolved fluorescence molecular tomography
The paper describes a TurbidMC code that implements a perturbative Monte Carlo method to model temporal point spread functions and sensitivity functions for time-resolved fluorescence molecular tomography (FMT). The code is aimed at working with a particular FMT method published earlier (Ref. [22]) which defines the specificity of sensitivity function calculation. The method solves the inverse problem first for a generalized fluorescence parameter distribution function and then calculates separate distributions for the fluorophore absorption coefficient and the fluorescence lifetime. The proper operation of the code was verified through a comparison between fluorescence temporal point spread functions from test calculations and data from experiments where a phantom with a fluorophore was scanned with a three-channel probe in the mesoscopic reflectance regime. An example is given on the reconstruction of fluorescence parameter distributions. It shows that the sensitivity functions are calculated correctly.
期刊介绍:
The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.