用三种方法计算圆柱矢量光束尖锐焦点处的强度

IF 1.1 Q4 OPTICS
A.G. Nalimov, V.V. Kotlyar, Yu.V. Khanenko
{"title":"用三种方法计算圆柱矢量光束尖锐焦点处的强度","authors":"A.G. Nalimov, V.V. Kotlyar, Yu.V. Khanenko","doi":"10.18287/2412-6179-co-1346","DOIUrl":null,"url":null,"abstract":"We conduct a comparative analysis of diffraction fields upon sharply focusing vortex and non-vortex incident beams, calculated using three non-paraxial methods. The methods employed are a finite difference time domain (FDTD) method, a Rayleigh–Sommerfeld integral, and a Richards–Wolf transformation. The Richards–Wolf transformation is used with two apodization functions of the exit pupil, for a spherical lens and a thin diffractive lens. The numerical simulation shows that the Rayleigh–Sommerfeld integral and the Richards–Wolf transformation can produce almost the same result and save time significantly. Meanwhile, the root-mean-square deviation of the results of both methods from the FDTD method can be as low as 2%. If an ultra-short focal length is used, the Richards–Wolf transformation is found to be more accurate, whereas with increasing distance from the initial plane and outside the focal plane, the Rayleigh-Sommerfeld integral is more accurate.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"4 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation of the intensity at the sharp focus of a cylindrical vector beam by three methods\",\"authors\":\"A.G. Nalimov, V.V. Kotlyar, Yu.V. Khanenko\",\"doi\":\"10.18287/2412-6179-co-1346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We conduct a comparative analysis of diffraction fields upon sharply focusing vortex and non-vortex incident beams, calculated using three non-paraxial methods. The methods employed are a finite difference time domain (FDTD) method, a Rayleigh–Sommerfeld integral, and a Richards–Wolf transformation. The Richards–Wolf transformation is used with two apodization functions of the exit pupil, for a spherical lens and a thin diffractive lens. The numerical simulation shows that the Rayleigh–Sommerfeld integral and the Richards–Wolf transformation can produce almost the same result and save time significantly. Meanwhile, the root-mean-square deviation of the results of both methods from the FDTD method can be as low as 2%. If an ultra-short focal length is used, the Richards–Wolf transformation is found to be more accurate, whereas with increasing distance from the initial plane and outside the focal plane, the Rayleigh-Sommerfeld integral is more accurate.\",\"PeriodicalId\":46692,\"journal\":{\"name\":\"Computer Optics\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们对锐利聚焦涡旋和非涡旋入射光束的衍射场进行了比较分析,使用三种非旁轴方法计算。采用时域有限差分法(FDTD)、Rayleigh-Sommerfeld积分法和Richards-Wolf变换法。对于球面透镜和薄衍射透镜,理查兹-沃尔夫变换与出瞳的两个离瞳函数一起使用。数值模拟结果表明,Rayleigh-Sommerfeld积分法与Richards-Wolf变换法可以得到几乎相同的结果,并且可以显著节省时间。同时,两种方法的时域有限差分法计算结果的均方根偏差可低至2%。如果使用超短焦距,则发现Richards-Wolf变换更准确,而随着距离初始平面和焦平面外的距离增加,Rayleigh-Sommerfeld积分更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calculation of the intensity at the sharp focus of a cylindrical vector beam by three methods
We conduct a comparative analysis of diffraction fields upon sharply focusing vortex and non-vortex incident beams, calculated using three non-paraxial methods. The methods employed are a finite difference time domain (FDTD) method, a Rayleigh–Sommerfeld integral, and a Richards–Wolf transformation. The Richards–Wolf transformation is used with two apodization functions of the exit pupil, for a spherical lens and a thin diffractive lens. The numerical simulation shows that the Rayleigh–Sommerfeld integral and the Richards–Wolf transformation can produce almost the same result and save time significantly. Meanwhile, the root-mean-square deviation of the results of both methods from the FDTD method can be as low as 2%. If an ultra-short focal length is used, the Richards–Wolf transformation is found to be more accurate, whereas with increasing distance from the initial plane and outside the focal plane, the Rayleigh-Sommerfeld integral is more accurate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Optics
Computer Optics OPTICS-
CiteScore
4.20
自引率
10.00%
发文量
73
审稿时长
9 weeks
期刊介绍: The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信