基于近似熵参数的非线性生物信号识别

IF 1.1 Q4 OPTICS
L.A. Manilo, A.P. Nemirko
{"title":"基于近似熵参数的非线性生物信号识别","authors":"L.A. Manilo, A.P. Nemirko","doi":"10.18287/2412-6179-co-1345","DOIUrl":null,"url":null,"abstract":"More and more attention is being paid to the development of methods for the objective analysis of biosignals for computer medical systems. The search for new non-standard methods is aimed at improving the reliability of diagnostics and expanding the areas of their practical application. In this paper, methods for recognizing biomedical signals by the degree of severity of their nonlinear components are considered. An approach based on the use of approximate entropy closely related to Kolmogorov entropy (K-entropy) is used. Its parameters can be used to detect dynamic irregularities associated with nonlinear properties of signals. The algorithm for calculating this characteristic is consid-ered in detail. Based on model experiments, its main properties are analyzed. It is shown that the entropy of a finite sequence, calculated in accordance with a multistep pro-cedure, can give an erroneous estimate of the degree of regularity of the signal. A procedure for correcting the approximate entropy is proposed, which expands the area of analysis of this function for estimating nonlinearity. It has been established that the transition to adjusted entropy makes it possible to increase the reliability of the detection of chaotic components. A set of entropy parameters is proposed for constructing recognition procedures. Examples of solving the problems of detecting atrial fibrillation by the parameters of the non-linearity of the rhythmogram, as well as assessing the depth of anesthesia by the electroencephalogram (EEG) are given. Experiments conducted on real recordings of electrocardiogram (ECG) and EEG signals have shown the high efficiency of the proposed algorithms. The proposed methods and algorithms can be used in the development of systems for monitoring ECG of cardiological patients, as well as monitoring the depth of anesthesia by EEG during surgical operations.","PeriodicalId":46692,"journal":{"name":"Computer Optics","volume":"138 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognition of biosignals with nonlinear properties by approximate entropy parameters\",\"authors\":\"L.A. Manilo, A.P. Nemirko\",\"doi\":\"10.18287/2412-6179-co-1345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"More and more attention is being paid to the development of methods for the objective analysis of biosignals for computer medical systems. The search for new non-standard methods is aimed at improving the reliability of diagnostics and expanding the areas of their practical application. In this paper, methods for recognizing biomedical signals by the degree of severity of their nonlinear components are considered. An approach based on the use of approximate entropy closely related to Kolmogorov entropy (K-entropy) is used. Its parameters can be used to detect dynamic irregularities associated with nonlinear properties of signals. The algorithm for calculating this characteristic is consid-ered in detail. Based on model experiments, its main properties are analyzed. It is shown that the entropy of a finite sequence, calculated in accordance with a multistep pro-cedure, can give an erroneous estimate of the degree of regularity of the signal. A procedure for correcting the approximate entropy is proposed, which expands the area of analysis of this function for estimating nonlinearity. It has been established that the transition to adjusted entropy makes it possible to increase the reliability of the detection of chaotic components. A set of entropy parameters is proposed for constructing recognition procedures. Examples of solving the problems of detecting atrial fibrillation by the parameters of the non-linearity of the rhythmogram, as well as assessing the depth of anesthesia by the electroencephalogram (EEG) are given. Experiments conducted on real recordings of electrocardiogram (ECG) and EEG signals have shown the high efficiency of the proposed algorithms. The proposed methods and algorithms can be used in the development of systems for monitoring ECG of cardiological patients, as well as monitoring the depth of anesthesia by EEG during surgical operations.\",\"PeriodicalId\":46692,\"journal\":{\"name\":\"Computer Optics\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

计算机医学系统中生物信号的客观分析方法的开发越来越受到人们的重视。寻找新的非标准方法的目的是提高诊断的可靠性和扩大其实际应用领域。本文研究了根据生物医学信号非线性分量的严重程度来识别生物医学信号的方法。一种基于近似熵的方法与Kolmogorov熵(k -熵)密切相关。它的参数可以用来检测与信号非线性特性相关的动态不规则性。详细讨论了该特性的计算算法。在模型实验的基础上,分析了其主要性能。结果表明,按照多步程序计算的有限序列的熵可能会对信号的正则性程度给出错误的估计。提出了一种近似熵的修正方法,扩大了该函数用于估计非线性的分析范围。已经证实,过渡到调整熵可以提高混沌成分检测的可靠性。提出了一组熵参数来构建识别过程。举例说明了利用心律失常非线性参数检测心房颤动和利用脑电图评估麻醉深度的问题。对实际记录的心电图和脑电图信号进行的实验表明,所提出的算法具有很高的效率。所提出的方法和算法可用于心脏病患者心电图监测系统的开发,也可用于外科手术中脑电图麻醉深度的监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition of biosignals with nonlinear properties by approximate entropy parameters
More and more attention is being paid to the development of methods for the objective analysis of biosignals for computer medical systems. The search for new non-standard methods is aimed at improving the reliability of diagnostics and expanding the areas of their practical application. In this paper, methods for recognizing biomedical signals by the degree of severity of their nonlinear components are considered. An approach based on the use of approximate entropy closely related to Kolmogorov entropy (K-entropy) is used. Its parameters can be used to detect dynamic irregularities associated with nonlinear properties of signals. The algorithm for calculating this characteristic is consid-ered in detail. Based on model experiments, its main properties are analyzed. It is shown that the entropy of a finite sequence, calculated in accordance with a multistep pro-cedure, can give an erroneous estimate of the degree of regularity of the signal. A procedure for correcting the approximate entropy is proposed, which expands the area of analysis of this function for estimating nonlinearity. It has been established that the transition to adjusted entropy makes it possible to increase the reliability of the detection of chaotic components. A set of entropy parameters is proposed for constructing recognition procedures. Examples of solving the problems of detecting atrial fibrillation by the parameters of the non-linearity of the rhythmogram, as well as assessing the depth of anesthesia by the electroencephalogram (EEG) are given. Experiments conducted on real recordings of electrocardiogram (ECG) and EEG signals have shown the high efficiency of the proposed algorithms. The proposed methods and algorithms can be used in the development of systems for monitoring ECG of cardiological patients, as well as monitoring the depth of anesthesia by EEG during surgical operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Optics
Computer Optics OPTICS-
CiteScore
4.20
自引率
10.00%
发文量
73
审稿时长
9 weeks
期刊介绍: The journal is intended for researchers and specialists active in the following research areas: Diffractive Optics; Information Optical Technology; Nanophotonics and Optics of Nanostructures; Image Analysis & Understanding; Information Coding & Security; Earth Remote Sensing Technologies; Hyperspectral Data Analysis; Numerical Methods for Optics and Image Processing; Intelligent Video Analysis. The journal "Computer Optics" has been published since 1987. Published 6 issues per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信