{"title":"一元函数的连续对数系数","authors":"Adam Lecko, Dariusz Partyka","doi":"10.1007/s40315-023-00500-9","DOIUrl":null,"url":null,"abstract":"Abstract The paper deals with logarithmic coefficients of univalent functions. The sharp lower and upper estimations of $$|\\gamma _2(f)|-|\\gamma _1(f)|$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>γ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> <mml:mo>-</mml:mo> <mml:mo>|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>γ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> </mml:mrow> </mml:math> were obtained in the class $${\\mathcal {S}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>S</mml:mi> </mml:math> , where $$\\gamma _n(f)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> denotes the n -th logarithmic coefficient of $$f\\in {\\mathcal {S}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>S</mml:mi> </mml:mrow> </mml:math> . The result is applicable to some standard subclasses of $${\\mathcal {S}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>S</mml:mi> </mml:math> . Relevant examples were indicated.","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":"116 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Successive Logarithmic Coefficients of Univalent Functions\",\"authors\":\"Adam Lecko, Dariusz Partyka\",\"doi\":\"10.1007/s40315-023-00500-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper deals with logarithmic coefficients of univalent functions. The sharp lower and upper estimations of $$|\\\\gamma _2(f)|-|\\\\gamma _1(f)|$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>γ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> <mml:mo>-</mml:mo> <mml:mo>|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>γ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> </mml:mrow> </mml:math> were obtained in the class $${\\\\mathcal {S}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>S</mml:mi> </mml:math> , where $$\\\\gamma _n(f)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> denotes the n -th logarithmic coefficient of $$f\\\\in {\\\\mathcal {S}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>S</mml:mi> </mml:mrow> </mml:math> . The result is applicable to some standard subclasses of $${\\\\mathcal {S}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>S</mml:mi> </mml:math> . Relevant examples were indicated.\",\"PeriodicalId\":49088,\"journal\":{\"name\":\"Computational Methods and Function Theory\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods and Function Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-023-00500-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods and Function Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40315-023-00500-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Successive Logarithmic Coefficients of Univalent Functions
Abstract The paper deals with logarithmic coefficients of univalent functions. The sharp lower and upper estimations of $$|\gamma _2(f)|-|\gamma _1(f)|$$ |γ2(f)|-|γ1(f)| were obtained in the class $${\mathcal {S}}$$ S , where $$\gamma _n(f)$$ γn(f) denotes the n -th logarithmic coefficient of $$f\in {\mathcal {S}}$$ f∈S . The result is applicable to some standard subclasses of $${\mathcal {S}}$$ S . Relevant examples were indicated.
期刊介绍:
CMFT is an international mathematics journal which publishes carefully selected original research papers in complex analysis (in a broad sense), and on applications or computational methods related to complex analysis. Survey articles of high standard and current interest can be considered for publication as well.