一元函数的连续对数系数

IF 0.6 4区 数学 Q3 MATHEMATICS
Adam Lecko, Dariusz Partyka
{"title":"一元函数的连续对数系数","authors":"Adam Lecko, Dariusz Partyka","doi":"10.1007/s40315-023-00500-9","DOIUrl":null,"url":null,"abstract":"Abstract The paper deals with logarithmic coefficients of univalent functions. The sharp lower and upper estimations of $$|\\gamma _2(f)|-|\\gamma _1(f)|$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>γ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> <mml:mo>-</mml:mo> <mml:mo>|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>γ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> </mml:mrow> </mml:math> were obtained in the class $${\\mathcal {S}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>S</mml:mi> </mml:math> , where $$\\gamma _n(f)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> denotes the n -th logarithmic coefficient of $$f\\in {\\mathcal {S}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>S</mml:mi> </mml:mrow> </mml:math> . The result is applicable to some standard subclasses of $${\\mathcal {S}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>S</mml:mi> </mml:math> . Relevant examples were indicated.","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":"116 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Successive Logarithmic Coefficients of Univalent Functions\",\"authors\":\"Adam Lecko, Dariusz Partyka\",\"doi\":\"10.1007/s40315-023-00500-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper deals with logarithmic coefficients of univalent functions. The sharp lower and upper estimations of $$|\\\\gamma _2(f)|-|\\\\gamma _1(f)|$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>γ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> <mml:mo>-</mml:mo> <mml:mo>|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>γ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mrow> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> </mml:mrow> </mml:math> were obtained in the class $${\\\\mathcal {S}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>S</mml:mi> </mml:math> , where $$\\\\gamma _n(f)$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>γ</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> denotes the n -th logarithmic coefficient of $$f\\\\in {\\\\mathcal {S}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>S</mml:mi> </mml:mrow> </mml:math> . The result is applicable to some standard subclasses of $${\\\\mathcal {S}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>S</mml:mi> </mml:math> . Relevant examples were indicated.\",\"PeriodicalId\":49088,\"journal\":{\"name\":\"Computational Methods and Function Theory\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods and Function Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40315-023-00500-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods and Function Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40315-023-00500-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究一元函数的对数系数。在$${\mathcal {S}}$$ S中得到了$$|\gamma _2(f)|-|\gamma _1(f)|$$ | γ 2 (f) | - | γ 1 (f) |的急剧上下估计,其中$$\gamma _n(f)$$ γ n (f)表示$$f\in {\mathcal {S}}$$ f∈S的第n次对数系数。该结果适用于$${\mathcal {S}}$$ S的一些标准子类。给出了相关的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Successive Logarithmic Coefficients of Univalent Functions
Abstract The paper deals with logarithmic coefficients of univalent functions. The sharp lower and upper estimations of $$|\gamma _2(f)|-|\gamma _1(f)|$$ | γ 2 ( f ) | - | γ 1 ( f ) | were obtained in the class $${\mathcal {S}}$$ S , where $$\gamma _n(f)$$ γ n ( f ) denotes the n -th logarithmic coefficient of $$f\in {\mathcal {S}}$$ f S . The result is applicable to some standard subclasses of $${\mathcal {S}}$$ S . Relevant examples were indicated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Methods and Function Theory
Computational Methods and Function Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.20
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: CMFT is an international mathematics journal which publishes carefully selected original research papers in complex analysis (in a broad sense), and on applications or computational methods related to complex analysis. Survey articles of high standard and current interest can be considered for publication as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信