{"title":"基于自适应代数观测器的质子交换膜燃料电池系统多目标滑模控制","authors":"Hao Jing, Tiexiong Huang, Cheng Li, Xiaodong Liu, Guangdi Hu, Chaoping Pang","doi":"10.1177/09576509231201995","DOIUrl":null,"url":null,"abstract":"To improve the efficiency and extend the lifespan of the proton exchange membrane fuel cells (PEMFC), it is imperative to control PEMFC’s supply system effectively. A sliding mode controller (SMC) based on adaptive algebraic observer is designed to control the oxygen excess ratio and the pressure difference between the cathode and anode of PEMFC. First, a 9th order physical model of the PEMFC system is established including air supply system, hydrogen supply system and the stack, which is validated against the experimental data with the maximum output voltage error of 2.91%. Then, a SMC is designed based on the control-oriented PEMFC model. An adaptive algebraic observer for the estimation of the gas partial pressure is designed to be used in the SMC. Finally, simulation is conducted and results show that the performance of the designed SMC is superior than that of the PID controller in terms of the oxygen excess ratio settling time (1s less), the pressure difference settling time (50% less) and overshoot (0.5 kPa less).","PeriodicalId":20705,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","volume":"61 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Objective sliding mode control of proton exchange membrane fuel cell system based on adaptive algebraic observer\",\"authors\":\"Hao Jing, Tiexiong Huang, Cheng Li, Xiaodong Liu, Guangdi Hu, Chaoping Pang\",\"doi\":\"10.1177/09576509231201995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the efficiency and extend the lifespan of the proton exchange membrane fuel cells (PEMFC), it is imperative to control PEMFC’s supply system effectively. A sliding mode controller (SMC) based on adaptive algebraic observer is designed to control the oxygen excess ratio and the pressure difference between the cathode and anode of PEMFC. First, a 9th order physical model of the PEMFC system is established including air supply system, hydrogen supply system and the stack, which is validated against the experimental data with the maximum output voltage error of 2.91%. Then, a SMC is designed based on the control-oriented PEMFC model. An adaptive algebraic observer for the estimation of the gas partial pressure is designed to be used in the SMC. Finally, simulation is conducted and results show that the performance of the designed SMC is superior than that of the PID controller in terms of the oxygen excess ratio settling time (1s less), the pressure difference settling time (50% less) and overshoot (0.5 kPa less).\",\"PeriodicalId\":20705,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09576509231201995\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09576509231201995","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Multi-Objective sliding mode control of proton exchange membrane fuel cell system based on adaptive algebraic observer
To improve the efficiency and extend the lifespan of the proton exchange membrane fuel cells (PEMFC), it is imperative to control PEMFC’s supply system effectively. A sliding mode controller (SMC) based on adaptive algebraic observer is designed to control the oxygen excess ratio and the pressure difference between the cathode and anode of PEMFC. First, a 9th order physical model of the PEMFC system is established including air supply system, hydrogen supply system and the stack, which is validated against the experimental data with the maximum output voltage error of 2.91%. Then, a SMC is designed based on the control-oriented PEMFC model. An adaptive algebraic observer for the estimation of the gas partial pressure is designed to be used in the SMC. Finally, simulation is conducted and results show that the performance of the designed SMC is superior than that of the PID controller in terms of the oxygen excess ratio settling time (1s less), the pressure difference settling time (50% less) and overshoot (0.5 kPa less).
期刊介绍:
The Journal of Power and Energy, Part A of the Proceedings of the Institution of Mechanical Engineers, is dedicated to publishing peer-reviewed papers of high scientific quality on all aspects of the technology of energy conversion systems.