人工智能辅助的辅助结构研究

Sergej Grednev, Henrik S. Steude, Stefan Bronder, Oliver Niggemann, Anne Jung
{"title":"人工智能辅助的辅助结构研究","authors":"Sergej Grednev, Henrik S. Steude, Stefan Bronder, Oliver Niggemann, Anne Jung","doi":"10.14311/app.2023.42.0032","DOIUrl":null,"url":null,"abstract":"In this study, the viability of using machine learning models to predict stress-strain curves of auxetic structures based on geometry-describing parameters is explored. Given the computational cost and time associated with generating these curves through numerical simulations, a machine learning-based approach promises a more efficient alternative. A range of machine learning models, including Artificial Neural Networks, k-Nearest Neighbors Regression, Support Vector Regression, and XGBoost, is implemented and compared regarding the aptitude to predict stress-strain curves under quasi-static compressive loading. Training data is generated using validated finite element simulations. The performance of these models is rigorously tested on data not seen during training. The Feed-Forward Artificial Neural Network emerged as the most proficient model, achieving a Mean Absolute Percentage Error of 0.367 ± 0.230.","PeriodicalId":7150,"journal":{"name":"Acta Polytechnica CTU Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-assisted study of auxetic structures\",\"authors\":\"Sergej Grednev, Henrik S. Steude, Stefan Bronder, Oliver Niggemann, Anne Jung\",\"doi\":\"10.14311/app.2023.42.0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the viability of using machine learning models to predict stress-strain curves of auxetic structures based on geometry-describing parameters is explored. Given the computational cost and time associated with generating these curves through numerical simulations, a machine learning-based approach promises a more efficient alternative. A range of machine learning models, including Artificial Neural Networks, k-Nearest Neighbors Regression, Support Vector Regression, and XGBoost, is implemented and compared regarding the aptitude to predict stress-strain curves under quasi-static compressive loading. Training data is generated using validated finite element simulations. The performance of these models is rigorously tested on data not seen during training. The Feed-Forward Artificial Neural Network emerged as the most proficient model, achieving a Mean Absolute Percentage Error of 0.367 ± 0.230.\",\"PeriodicalId\":7150,\"journal\":{\"name\":\"Acta Polytechnica CTU Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Polytechnica CTU Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14311/app.2023.42.0032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Polytechnica CTU Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/app.2023.42.0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,探讨了基于几何描述参数的机器学习模型预测缺失结构应力-应变曲线的可行性。考虑到通过数值模拟生成这些曲线的计算成本和时间,基于机器学习的方法有望成为更有效的替代方案。一系列机器学习模型,包括人工神经网络、k近邻回归、支持向量回归和XGBoost,都被实现并比较了在准静态压缩载荷下预测应力-应变曲线的能力。训练数据是使用经过验证的有限元模拟生成的。这些模型的性能是在训练期间没有看到的数据上严格测试的。前馈人工神经网络是最熟练的模型,平均绝对百分比误差为0.367±0.230。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-assisted study of auxetic structures
In this study, the viability of using machine learning models to predict stress-strain curves of auxetic structures based on geometry-describing parameters is explored. Given the computational cost and time associated with generating these curves through numerical simulations, a machine learning-based approach promises a more efficient alternative. A range of machine learning models, including Artificial Neural Networks, k-Nearest Neighbors Regression, Support Vector Regression, and XGBoost, is implemented and compared regarding the aptitude to predict stress-strain curves under quasi-static compressive loading. Training data is generated using validated finite element simulations. The performance of these models is rigorously tested on data not seen during training. The Feed-Forward Artificial Neural Network emerged as the most proficient model, achieving a Mean Absolute Percentage Error of 0.367 ± 0.230.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信