运动传感器Physilog®5应用于肩关节的实验验证

Jan Krivošej, Jana Garanová Krišťáková, Matej Daniel, Zbyněk Šika
{"title":"运动传感器Physilog®5应用于肩关节的实验验证","authors":"Jan Krivošej, Jana Garanová Krišťáková, Matej Daniel, Zbyněk Šika","doi":"10.14311/app.2023.42.0055","DOIUrl":null,"url":null,"abstract":"The main motivation of this paper is to verify the idea of using the Physilog®5 unit for the patients with shoulder movement difficulties. The attached sensor to the patient’s arm then measures motion during which the patient should follow certain paths. Finally, if a patient has difficulty with motion requirements, some typical pattern for their problem should emerge. By analysing these patterns, a database of typical problems could be created, which could assist doctors in determining a patient’s diagnosis.The experiment is focused on Physilog® concerning the 5th generation. The goal is to experimentally identify and verify the performance of this generation during relatively large motions of the upper limb. For this purpose, an experimental stand representing spherical joint with an accurate absolute position sensing is assembled and calibrated. Subsequently, the three Physilog®5 sensors are mounted on this stand at different positions.","PeriodicalId":7150,"journal":{"name":"Acta Polytechnica CTU Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental validation of motion sensor Physilog®5 applied to shoulder joint\",\"authors\":\"Jan Krivošej, Jana Garanová Krišťáková, Matej Daniel, Zbyněk Šika\",\"doi\":\"10.14311/app.2023.42.0055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main motivation of this paper is to verify the idea of using the Physilog®5 unit for the patients with shoulder movement difficulties. The attached sensor to the patient’s arm then measures motion during which the patient should follow certain paths. Finally, if a patient has difficulty with motion requirements, some typical pattern for their problem should emerge. By analysing these patterns, a database of typical problems could be created, which could assist doctors in determining a patient’s diagnosis.The experiment is focused on Physilog® concerning the 5th generation. The goal is to experimentally identify and verify the performance of this generation during relatively large motions of the upper limb. For this purpose, an experimental stand representing spherical joint with an accurate absolute position sensing is assembled and calibrated. Subsequently, the three Physilog®5 sensors are mounted on this stand at different positions.\",\"PeriodicalId\":7150,\"journal\":{\"name\":\"Acta Polytechnica CTU Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Polytechnica CTU Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14311/app.2023.42.0055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Polytechnica CTU Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/app.2023.42.0055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要动机是验证使用Physilog®5单元治疗肩部运动困难患者的想法。附着在病人手臂上的传感器然后测量运动,在此期间病人应该遵循一定的路径。最后,如果患者在运动要求上有困难,那么他们的问题应该出现一些典型的模式。通过分析这些模式,可以创建一个典型问题的数据库,这可以帮助医生确定患者的诊断。实验的重点是第五代的Physilog®。目的是通过实验确定和验证这一代在上肢相对较大的运动中的表现。为此,组装并校准了具有精确绝对位置传感的球形关节实验台。随后,三个Physilog®5传感器安装在该支架的不同位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental validation of motion sensor Physilog®5 applied to shoulder joint
The main motivation of this paper is to verify the idea of using the Physilog®5 unit for the patients with shoulder movement difficulties. The attached sensor to the patient’s arm then measures motion during which the patient should follow certain paths. Finally, if a patient has difficulty with motion requirements, some typical pattern for their problem should emerge. By analysing these patterns, a database of typical problems could be created, which could assist doctors in determining a patient’s diagnosis.The experiment is focused on Physilog® concerning the 5th generation. The goal is to experimentally identify and verify the performance of this generation during relatively large motions of the upper limb. For this purpose, an experimental stand representing spherical joint with an accurate absolute position sensing is assembled and calibrated. Subsequently, the three Physilog®5 sensors are mounted on this stand at different positions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信