点源处狄拉克粒子的产生速率

Joscha Henheik, Roderich Tumulka
{"title":"点源处狄拉克粒子的产生速率","authors":"Joscha Henheik, Roderich Tumulka","doi":"10.1088/1751-8121/acfe62","DOIUrl":null,"url":null,"abstract":"Abstract Only recently has it been possible to construct a self-adjoint Hamiltonian that involves the creation of Dirac particles at a point source in 3d space. Its definition makes use of an interior-boundary condition. Here, we develop for this Hamiltonian a corresponding theory of the Bohmian configuration. That is, we (non-rigorously) construct a Markov jump process <?CDATA $(Q_t)_{t\\in\\mathbb{R}}$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mi>Q</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mrow> <mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> in the configuration space of a variable number of particles that is <?CDATA $|\\psi_t|^2$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>ψ</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:msup> <mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> -distributed at every time t and follows Bohmian trajectories between the jumps. The jumps correspond to particle creation or annihilation events and occur either to or from a configuration with a particle located at the source. The process is the natural analog of Bell’s jump process, and a central piece in its construction is the determination of the rate of particle creation. The construction requires an analysis of the asymptotic behavior of the Bohmian trajectories near the source. We find that the particle reaches the source with radial speed 0, but orbits around the source infinitely many times in finite time before absorption (or after emission).","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creation rate of Dirac particles at a point source\",\"authors\":\"Joscha Henheik, Roderich Tumulka\",\"doi\":\"10.1088/1751-8121/acfe62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Only recently has it been possible to construct a self-adjoint Hamiltonian that involves the creation of Dirac particles at a point source in 3d space. Its definition makes use of an interior-boundary condition. Here, we develop for this Hamiltonian a corresponding theory of the Bohmian configuration. That is, we (non-rigorously) construct a Markov jump process <?CDATA $(Q_t)_{t\\\\in\\\\mathbb{R}}$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:msub> <mml:mi>Q</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mrow> <mml:msub> <mml:mo stretchy=\\\"false\\\">)</mml:mo> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> in the configuration space of a variable number of particles that is <?CDATA $|\\\\psi_t|^2$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>ψ</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:msup> <mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> -distributed at every time t and follows Bohmian trajectories between the jumps. The jumps correspond to particle creation or annihilation events and occur either to or from a configuration with a particle located at the source. The process is the natural analog of Bell’s jump process, and a central piece in its construction is the determination of the rate of particle creation. The construction requires an analysis of the asymptotic behavior of the Bohmian trajectories near the source. We find that the particle reaches the source with radial speed 0, but orbits around the source infinitely many times in finite time before absorption (or after emission).\",\"PeriodicalId\":16785,\"journal\":{\"name\":\"Journal of Physics A\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/acfe62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/acfe62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

直到最近才有可能构造一个涉及在三维空间中点源处创建狄拉克粒子的自伴随哈密顿量。它的定义利用了一个内边界条件。在这里,我们为这个哈密顿量建立了一个相应的波西米亚位形理论。也就是说,我们(非严格地)构造了一个马尔可夫跳跃过程(Q t) t∈R,这个过程是在每次t时刻分布的可变粒子数的位形空间中,并且在跳跃之间遵循波希米亚轨迹。跳跃对应于粒子产生或湮灭事件,发生在粒子位于源的配置中或从配置中。这个过程是贝尔跳跃过程的自然模拟,其结构的核心部分是确定粒子产生的速度。这种构造需要对波希曼轨迹在源附近的渐近行为进行分析。我们发现粒子以径向速度0到达源,但在吸收前(或发射后)的有限时间内绕源无限次运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Creation rate of Dirac particles at a point source
Abstract Only recently has it been possible to construct a self-adjoint Hamiltonian that involves the creation of Dirac particles at a point source in 3d space. Its definition makes use of an interior-boundary condition. Here, we develop for this Hamiltonian a corresponding theory of the Bohmian configuration. That is, we (non-rigorously) construct a Markov jump process ( Q t ) t R in the configuration space of a variable number of particles that is | ψ t | 2 -distributed at every time t and follows Bohmian trajectories between the jumps. The jumps correspond to particle creation or annihilation events and occur either to or from a configuration with a particle located at the source. The process is the natural analog of Bell’s jump process, and a central piece in its construction is the determination of the rate of particle creation. The construction requires an analysis of the asymptotic behavior of the Bohmian trajectories near the source. We find that the particle reaches the source with radial speed 0, but orbits around the source infinitely many times in finite time before absorption (or after emission).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信