雷诺数对流向长径比为1 ~ 4的矩形圆柱湍流尾迹的影响

IF 1.8 3区 工程技术 Q3 ENGINEERING, MECHANICAL
Manqi Liu, Sedem Kumahor, Mark Tachie
{"title":"雷诺数对流向长径比为1 ~ 4的矩形圆柱湍流尾迹的影响","authors":"Manqi Liu, Sedem Kumahor, Mark Tachie","doi":"10.1115/1.4063434","DOIUrl":null,"url":null,"abstract":"Abstract The effects of streamwise aspect ratio and Reynolds number on the separated shear layer and near wake of rectangular cylinders in uniform flow are investigated experimentally using a particle image velocimetry system. Four length-to-height ratios (AR = 1, 2, 3, and 4) were examined at Reynolds numbers (based on freestream velocity and cylinder height) of 3000, 7200, 14,700, and 21,000. The results show that the separated shear layer is either shed directly into the wake region (AR1 and AR2) or reattaches onto the cylinder (AR4), regardless of the Reynolds number. Meanwhile, a transitional regime occurs for AR3 where mean flow reattachment on the cylinder is highly dependent on the Reynolds number. The peak magnitudes of the Reynolds stresses, turbulent kinetic energy, turbulence production, and its transport are highest for AR1 owing to stronger vortex shedding. Aspect ratio and Reynolds number also have significant effects on shear layer transitioning from laminar to turbulence but the transition lengths, when normalized by the corresponding value at Re = 3000, follow a universal power decay law. The wake characteristics, including the recirculation length and wake formation lengths, are independent of Reynolds number for AR1 but decrease with Reynolds number for the longer cylinders, while AR2 shows the largest values. The probability density functions and joint probability density functions are used to examine the effects of Reynolds number on the fluctuating velocities and momentum transport in the shear layer and near-wake region.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reynolds Number Effects On Turbulent Wakes Generated by Rectangular Cylinders with Streamwise Aspect Ratios Between 1 to 4\",\"authors\":\"Manqi Liu, Sedem Kumahor, Mark Tachie\",\"doi\":\"10.1115/1.4063434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The effects of streamwise aspect ratio and Reynolds number on the separated shear layer and near wake of rectangular cylinders in uniform flow are investigated experimentally using a particle image velocimetry system. Four length-to-height ratios (AR = 1, 2, 3, and 4) were examined at Reynolds numbers (based on freestream velocity and cylinder height) of 3000, 7200, 14,700, and 21,000. The results show that the separated shear layer is either shed directly into the wake region (AR1 and AR2) or reattaches onto the cylinder (AR4), regardless of the Reynolds number. Meanwhile, a transitional regime occurs for AR3 where mean flow reattachment on the cylinder is highly dependent on the Reynolds number. The peak magnitudes of the Reynolds stresses, turbulent kinetic energy, turbulence production, and its transport are highest for AR1 owing to stronger vortex shedding. Aspect ratio and Reynolds number also have significant effects on shear layer transitioning from laminar to turbulence but the transition lengths, when normalized by the corresponding value at Re = 3000, follow a universal power decay law. The wake characteristics, including the recirculation length and wake formation lengths, are independent of Reynolds number for AR1 but decrease with Reynolds number for the longer cylinders, while AR2 shows the largest values. The probability density functions and joint probability density functions are used to examine the effects of Reynolds number on the fluctuating velocities and momentum transport in the shear layer and near-wake region.\",\"PeriodicalId\":54833,\"journal\":{\"name\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluids Engineering-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063434\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063434","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

摘要利用粒子图像测速系统,研究了均匀流动中流向展弦比和雷诺数对矩形圆柱分离剪切层和近尾迹的影响。在雷诺数(基于自由流速度和圆柱高度)分别为3000、7200、14,700和21,000时,研究了四种长高比(AR = 1,2,3和4)。结果表明,无论雷诺数如何,分离的剪切层要么直接脱落到尾迹区(AR1和AR2),要么重新附着在圆柱体上(AR4)。与此同时,AR3出现了过渡状态,其中柱体上的平均流动再附着高度依赖于雷诺数。由于涡旋脱落较强,AR1的雷诺应力、湍流动能、湍流产生及其输运峰值最大。展弦比和雷诺数对剪切层从层流过渡到湍流也有显著影响,但当用Re = 3000处的相应值归一化时,过渡长度遵循普遍的功率衰减规律。AR1的尾迹特性,包括再循环长度和尾迹形成长度,与雷诺数无关,但随着雷诺数的增加而减小,而AR2的数值最大。利用概率密度函数和联合概率密度函数研究了雷诺数对剪切层和近尾迹区脉动速度和动量输运的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reynolds Number Effects On Turbulent Wakes Generated by Rectangular Cylinders with Streamwise Aspect Ratios Between 1 to 4
Abstract The effects of streamwise aspect ratio and Reynolds number on the separated shear layer and near wake of rectangular cylinders in uniform flow are investigated experimentally using a particle image velocimetry system. Four length-to-height ratios (AR = 1, 2, 3, and 4) were examined at Reynolds numbers (based on freestream velocity and cylinder height) of 3000, 7200, 14,700, and 21,000. The results show that the separated shear layer is either shed directly into the wake region (AR1 and AR2) or reattaches onto the cylinder (AR4), regardless of the Reynolds number. Meanwhile, a transitional regime occurs for AR3 where mean flow reattachment on the cylinder is highly dependent on the Reynolds number. The peak magnitudes of the Reynolds stresses, turbulent kinetic energy, turbulence production, and its transport are highest for AR1 owing to stronger vortex shedding. Aspect ratio and Reynolds number also have significant effects on shear layer transitioning from laminar to turbulence but the transition lengths, when normalized by the corresponding value at Re = 3000, follow a universal power decay law. The wake characteristics, including the recirculation length and wake formation lengths, are independent of Reynolds number for AR1 but decrease with Reynolds number for the longer cylinders, while AR2 shows the largest values. The probability density functions and joint probability density functions are used to examine the effects of Reynolds number on the fluctuating velocities and momentum transport in the shear layer and near-wake region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
10.00%
发文量
165
审稿时长
5.0 months
期刊介绍: Multiphase flows; Pumps; Aerodynamics; Boundary layers; Bubbly flows; Cavitation; Compressible flows; Convective heat/mass transfer as it is affected by fluid flow; Duct and pipe flows; Free shear layers; Flows in biological systems; Fluid-structure interaction; Fluid transients and wave motion; Jets; Naval hydrodynamics; Sprays; Stability and transition; Turbulence wakes microfluidics and other fundamental/applied fluid mechanical phenomena and processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信