Soheil Behnezhad, MohammadTaghi Hajiaghayi, David G. Harris
{"title":"指数更快的大规模并行最大匹配","authors":"Soheil Behnezhad, MohammadTaghi Hajiaghayi, David G. Harris","doi":"10.1145/3617360","DOIUrl":null,"url":null,"abstract":"The study of approximate matching in the Massively Parallel Computations (MPC) model has recently seen a burst of breakthroughs. Despite this progress, we still have a limited understanding of maximal matching which is one of the central problems of parallel and distributed computing. All known MPC algorithms for maximal matching either take polylogarithmic time which is considered inefficient, or require a strictly super-linear space of n 1+Ω (1) per machine. In this work, we close this gap by providing a novel analysis of an extremely simple algorithm, which is a variant of an algorithm conjectured to work by Czumaj, Lacki, Madry, Mitrovic, Onak, and Sankowski [ 15 ]. The algorithm edge-samples the graph, randomly partitions the vertices, and finds a random greedy maximal matching within each partition. We show that this algorithm drastically reduces the vertex degrees. This, among other results, leads to an O (log log Δ) round algorithm for maximal matching with O(n) space (or even mildly sublinear in n using standard techniques). As an immediate corollary, we get a 2 approximate minimum vertex cover in essentially the same rounds and space, which is the optimal approximation factor under standard assumptions. We also get an improved O (log log Δ) round algorithm for 1 + ε approximate matching. All these results can also be implemented in the congested clique model in the same number of rounds.","PeriodicalId":50022,"journal":{"name":"Journal of the ACM","volume":"36 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exponentially Faster Massively Parallel Maximal Matching\",\"authors\":\"Soheil Behnezhad, MohammadTaghi Hajiaghayi, David G. Harris\",\"doi\":\"10.1145/3617360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of approximate matching in the Massively Parallel Computations (MPC) model has recently seen a burst of breakthroughs. Despite this progress, we still have a limited understanding of maximal matching which is one of the central problems of parallel and distributed computing. All known MPC algorithms for maximal matching either take polylogarithmic time which is considered inefficient, or require a strictly super-linear space of n 1+Ω (1) per machine. In this work, we close this gap by providing a novel analysis of an extremely simple algorithm, which is a variant of an algorithm conjectured to work by Czumaj, Lacki, Madry, Mitrovic, Onak, and Sankowski [ 15 ]. The algorithm edge-samples the graph, randomly partitions the vertices, and finds a random greedy maximal matching within each partition. We show that this algorithm drastically reduces the vertex degrees. This, among other results, leads to an O (log log Δ) round algorithm for maximal matching with O(n) space (or even mildly sublinear in n using standard techniques). As an immediate corollary, we get a 2 approximate minimum vertex cover in essentially the same rounds and space, which is the optimal approximation factor under standard assumptions. We also get an improved O (log log Δ) round algorithm for 1 + ε approximate matching. All these results can also be implemented in the congested clique model in the same number of rounds.\",\"PeriodicalId\":50022,\"journal\":{\"name\":\"Journal of the ACM\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3617360\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3617360","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
The study of approximate matching in the Massively Parallel Computations (MPC) model has recently seen a burst of breakthroughs. Despite this progress, we still have a limited understanding of maximal matching which is one of the central problems of parallel and distributed computing. All known MPC algorithms for maximal matching either take polylogarithmic time which is considered inefficient, or require a strictly super-linear space of n 1+Ω (1) per machine. In this work, we close this gap by providing a novel analysis of an extremely simple algorithm, which is a variant of an algorithm conjectured to work by Czumaj, Lacki, Madry, Mitrovic, Onak, and Sankowski [ 15 ]. The algorithm edge-samples the graph, randomly partitions the vertices, and finds a random greedy maximal matching within each partition. We show that this algorithm drastically reduces the vertex degrees. This, among other results, leads to an O (log log Δ) round algorithm for maximal matching with O(n) space (or even mildly sublinear in n using standard techniques). As an immediate corollary, we get a 2 approximate minimum vertex cover in essentially the same rounds and space, which is the optimal approximation factor under standard assumptions. We also get an improved O (log log Δ) round algorithm for 1 + ε approximate matching. All these results can also be implemented in the congested clique model in the same number of rounds.
期刊介绍:
The best indicator of the scope of the journal is provided by the areas covered by its Editorial Board. These areas change from time to time, as the field evolves. The following areas are currently covered by a member of the Editorial Board: Algorithms and Combinatorial Optimization; Algorithms and Data Structures; Algorithms, Combinatorial Optimization, and Games; Artificial Intelligence; Complexity Theory; Computational Biology; Computational Geometry; Computer Graphics and Computer Vision; Computer-Aided Verification; Cryptography and Security; Cyber-Physical, Embedded, and Real-Time Systems; Database Systems and Theory; Distributed Computing; Economics and Computation; Information Theory; Logic and Computation; Logic, Algorithms, and Complexity; Machine Learning and Computational Learning Theory; Networking; Parallel Computing and Architecture; Programming Languages; Quantum Computing; Randomized Algorithms and Probabilistic Analysis of Algorithms; Scientific Computing and High Performance Computing; Software Engineering; Web Algorithms and Data Mining