{"title":"基于光散射模型的多层物体分割方法","authors":"S.D. Bazhitov, A.V. Larichev, A.V. Razgulin, T.E. Romanenko","doi":"10.18287/2412-6179-co-1266","DOIUrl":null,"url":null,"abstract":"We discuss a problem of reconstructing (sectioning) multilayer object images in observed images obtained by focusing the imaging system on each layer and containing spurious blurry images of neighboring layers. The blurring model used describes a physical process of incoherent light scattering in the Fresnel approximation with a priori unknown parameters of the point spread function. We propose a method of \"Boundary separation\" of sectioning, which combines the use of a physical blur model with modern methods of blur estimating and edge detection. The results of testing the \"Boundary separation\" method on the data of physical experiments with different-scale model multilayer objects are analyzed and compared with the existing methods for solving the optical sectioning problem. It is concluded that the method is most effective on multilayer objects with clearly defined boundaries, on which the method has demonstrated almost complete restoration of the desired layers.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method of multilayer object sectioning based on a light scattering model\",\"authors\":\"S.D. Bazhitov, A.V. Larichev, A.V. Razgulin, T.E. Romanenko\",\"doi\":\"10.18287/2412-6179-co-1266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss a problem of reconstructing (sectioning) multilayer object images in observed images obtained by focusing the imaging system on each layer and containing spurious blurry images of neighboring layers. The blurring model used describes a physical process of incoherent light scattering in the Fresnel approximation with a priori unknown parameters of the point spread function. We propose a method of \\\"Boundary separation\\\" of sectioning, which combines the use of a physical blur model with modern methods of blur estimating and edge detection. The results of testing the \\\"Boundary separation\\\" method on the data of physical experiments with different-scale model multilayer objects are analyzed and compared with the existing methods for solving the optical sectioning problem. It is concluded that the method is most effective on multilayer objects with clearly defined boundaries, on which the method has demonstrated almost complete restoration of the desired layers.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1266\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1266","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Method of multilayer object sectioning based on a light scattering model
We discuss a problem of reconstructing (sectioning) multilayer object images in observed images obtained by focusing the imaging system on each layer and containing spurious blurry images of neighboring layers. The blurring model used describes a physical process of incoherent light scattering in the Fresnel approximation with a priori unknown parameters of the point spread function. We propose a method of "Boundary separation" of sectioning, which combines the use of a physical blur model with modern methods of blur estimating and edge detection. The results of testing the "Boundary separation" method on the data of physical experiments with different-scale model multilayer objects are analyzed and compared with the existing methods for solving the optical sectioning problem. It is concluded that the method is most effective on multilayer objects with clearly defined boundaries, on which the method has demonstrated almost complete restoration of the desired layers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.