多分量模型的Euler-Navier-Stokes-Korteweg方程的高摩擦极限

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Giada Cianfarani Carnevale, Corrado Lattanzio
{"title":"多分量模型的Euler-Navier-Stokes-Korteweg方程的高摩擦极限","authors":"Giada Cianfarani Carnevale, Corrado Lattanzio","doi":"10.4310/cms.2023.v21.n7.a4","DOIUrl":null,"url":null,"abstract":"In this paper we analyze the high friction regime for the Navier Stokes Korteweg equations for multicomponent systems. According to the shape of the mixing and friction terms, we shall perform two limits: the high friction limit toward an equilibrium system for the limit densities and the barycentric velocity, and, after an appropriate time scaling, the diffusive relaxation toward parabolic, gradient flow equations for the limit densities. The rigorous justification of these limits is done by means of relative entropy techniques in the framework of weak, finite energy solutions of the relaxation models, rewritten in the enlarged formulation in terms of the drift velocity, toward smooth solutions of the corresponding equilibrium dynamics. Finally, since our estimates are uniform for small viscosity, the results are also valid for the Euler Korteweg multicomponent models, and the corresponding estimates can be obtained by sending the viscosity to zero.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"110 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High friction limits of Euler–Navier–Stokes–Korteweg equations for multicomponent models\",\"authors\":\"Giada Cianfarani Carnevale, Corrado Lattanzio\",\"doi\":\"10.4310/cms.2023.v21.n7.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we analyze the high friction regime for the Navier Stokes Korteweg equations for multicomponent systems. According to the shape of the mixing and friction terms, we shall perform two limits: the high friction limit toward an equilibrium system for the limit densities and the barycentric velocity, and, after an appropriate time scaling, the diffusive relaxation toward parabolic, gradient flow equations for the limit densities. The rigorous justification of these limits is done by means of relative entropy techniques in the framework of weak, finite energy solutions of the relaxation models, rewritten in the enlarged formulation in terms of the drift velocity, toward smooth solutions of the corresponding equilibrium dynamics. Finally, since our estimates are uniform for small viscosity, the results are also valid for the Euler Korteweg multicomponent models, and the corresponding estimates can be obtained by sending the viscosity to zero.\",\"PeriodicalId\":50659,\"journal\":{\"name\":\"Communications in Mathematical Sciences\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/cms.2023.v21.n7.a4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/cms.2023.v21.n7.a4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
High friction limits of Euler–Navier–Stokes–Korteweg equations for multicomponent models
In this paper we analyze the high friction regime for the Navier Stokes Korteweg equations for multicomponent systems. According to the shape of the mixing and friction terms, we shall perform two limits: the high friction limit toward an equilibrium system for the limit densities and the barycentric velocity, and, after an appropriate time scaling, the diffusive relaxation toward parabolic, gradient flow equations for the limit densities. The rigorous justification of these limits is done by means of relative entropy techniques in the framework of weak, finite energy solutions of the relaxation models, rewritten in the enlarged formulation in terms of the drift velocity, toward smooth solutions of the corresponding equilibrium dynamics. Finally, since our estimates are uniform for small viscosity, the results are also valid for the Euler Korteweg multicomponent models, and the corresponding estimates can be obtained by sending the viscosity to zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
59
审稿时长
6 months
期刊介绍: Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信