Grigoriy I. Gusev, Andrey A. Gushchin, Vladimir I. Grinevich, Ekaterina M. Baburina, Ekaterina S. Severgina, Natalya E. Gordina
{"title":"蛭石锆复合材料在介质阻挡放电中等离子体催化分解2,4-二氯苯酚","authors":"Grigoriy I. Gusev, Andrey A. Gushchin, Vladimir I. Grinevich, Ekaterina M. Baburina, Ekaterina S. Severgina, Natalya E. Gordina","doi":"10.4236/aces.2023.134022","DOIUrl":null,"url":null,"abstract":"The paper presents comparative kinetic characteristics of the decomposition of 2,4-dichlorophenol in a dielectric barrier discharge and a combined plasma-catalytic process. Vermiculite containing 5% zirconium was used as a catalyst. The destruction processes of 2,4-DCP proceed efficiently, the degree of decomposition increases in the combined plasma-catalytic process by a factor of 1.33 and reaches 80%. The experimental results were processed according to the first-order kinetic law (R2 > 0.97), according to which the effective constants (0.36 ± 0.04) and (0.51 ± 0.03) s-1 and the decomposition rates of 2,4-DCP (106 and 123 μmol/l·s) when treating model solutions without a catalyst and with vermiculite + Zr 5%, respectively, and the energy costs are 0.012 and 0.017 molecules/100eV. The main decomposition products present in the solution have been determined to be carboxylic acids, aldehydes, the contribution of which does not exceed 2%, as well as chloride ions, and in the gas phase they are carbon dioxide and molecular chlorine (the share of which does not exceed 1.5% of total chlorine content in the system).","PeriodicalId":7332,"journal":{"name":"Advances in Chemical Engineering and Science","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma-Catalytic Decomposition of 2,4-Dichlorophenol in a Dielectric Barrier Discharge with a Vermiculite ZiO2 Composite\",\"authors\":\"Grigoriy I. Gusev, Andrey A. Gushchin, Vladimir I. Grinevich, Ekaterina M. Baburina, Ekaterina S. Severgina, Natalya E. Gordina\",\"doi\":\"10.4236/aces.2023.134022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents comparative kinetic characteristics of the decomposition of 2,4-dichlorophenol in a dielectric barrier discharge and a combined plasma-catalytic process. Vermiculite containing 5% zirconium was used as a catalyst. The destruction processes of 2,4-DCP proceed efficiently, the degree of decomposition increases in the combined plasma-catalytic process by a factor of 1.33 and reaches 80%. The experimental results were processed according to the first-order kinetic law (R2 > 0.97), according to which the effective constants (0.36 ± 0.04) and (0.51 ± 0.03) s-1 and the decomposition rates of 2,4-DCP (106 and 123 μmol/l·s) when treating model solutions without a catalyst and with vermiculite + Zr 5%, respectively, and the energy costs are 0.012 and 0.017 molecules/100eV. The main decomposition products present in the solution have been determined to be carboxylic acids, aldehydes, the contribution of which does not exceed 2%, as well as chloride ions, and in the gas phase they are carbon dioxide and molecular chlorine (the share of which does not exceed 1.5% of total chlorine content in the system).\",\"PeriodicalId\":7332,\"journal\":{\"name\":\"Advances in Chemical Engineering and Science\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Chemical Engineering and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/aces.2023.134022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Chemical Engineering and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/aces.2023.134022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Plasma-Catalytic Decomposition of 2,4-Dichlorophenol in a Dielectric Barrier Discharge with a Vermiculite ZiO2 Composite
The paper presents comparative kinetic characteristics of the decomposition of 2,4-dichlorophenol in a dielectric barrier discharge and a combined plasma-catalytic process. Vermiculite containing 5% zirconium was used as a catalyst. The destruction processes of 2,4-DCP proceed efficiently, the degree of decomposition increases in the combined plasma-catalytic process by a factor of 1.33 and reaches 80%. The experimental results were processed according to the first-order kinetic law (R2 > 0.97), according to which the effective constants (0.36 ± 0.04) and (0.51 ± 0.03) s-1 and the decomposition rates of 2,4-DCP (106 and 123 μmol/l·s) when treating model solutions without a catalyst and with vermiculite + Zr 5%, respectively, and the energy costs are 0.012 and 0.017 molecules/100eV. The main decomposition products present in the solution have been determined to be carboxylic acids, aldehydes, the contribution of which does not exceed 2%, as well as chloride ions, and in the gas phase they are carbon dioxide and molecular chlorine (the share of which does not exceed 1.5% of total chlorine content in the system).