si掺杂<i>β</i>-Ga<sub>2</sub>O<sub>3</sub>采用基于第一性原理的GGA+U方法

None Zhang Ying-Nan, None Zhang Min, None Zhang Pai, None Hu Wen-Bo
{"title":"si掺杂&lt;i&gt;β&lt;/i&gt;-Ga&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;采用基于第一性原理的GGA+U方法","authors":"None Zhang Ying-Nan, None Zhang Min, None Zhang Pai, None Hu Wen-Bo","doi":"10.7498/aps.72.20231147","DOIUrl":null,"url":null,"abstract":"In this work, the formation energy, band structure, state density, differential charge density and optoelectronic properties of undoped and Si doped <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> are calculated using GGA+U method based on density functional theory. The results show that the Si-substituted tetrahedron Ga(1) is more easily synthesized in experiments, and the obtained <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> band gap and Ga 3d state peak are in good agreement with the experimental results, and the effective doping is more likely to be obtained under oxygen-poor conditions. After Si doping, the total energy band moves to the low-energy end, and Fermi level enters the conduction band, showing n-type conductive characterastic. Si 3s orbital electrons occupy the bottom of the conduction band, the degree of electronic coocupy is strengthened, and the conductivity is improved. The dielectric function ε2(ω) results show that with the increase of Si doping concentration, the ability to stimulate conductive electrons first increases and then decreases, which is in good agreement with the quantitative analysis results of conductivity. The optical band gap increases and the absorption band edge rises slowly with the increase of Si doping concentration. The results of absorption spectra show that Si-doped <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> has strong deep ultraviolet photoelectric detection ability. The calculated results provide a theoretical reference for the further experimental investigation and the optimization innovation of Si-doped <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> and relative device design.","PeriodicalId":10252,"journal":{"name":"Chinese Physics","volume":"377 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invesigation of the electronic structure and Optoelectronic properties of Si-doped &lt;i&gt;β&lt;/i&gt;-Ga&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt; using GGA+U method based on first-principle\",\"authors\":\"None Zhang Ying-Nan, None Zhang Min, None Zhang Pai, None Hu Wen-Bo\",\"doi\":\"10.7498/aps.72.20231147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the formation energy, band structure, state density, differential charge density and optoelectronic properties of undoped and Si doped <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> are calculated using GGA+U method based on density functional theory. The results show that the Si-substituted tetrahedron Ga(1) is more easily synthesized in experiments, and the obtained <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> band gap and Ga 3d state peak are in good agreement with the experimental results, and the effective doping is more likely to be obtained under oxygen-poor conditions. After Si doping, the total energy band moves to the low-energy end, and Fermi level enters the conduction band, showing n-type conductive characterastic. Si 3s orbital electrons occupy the bottom of the conduction band, the degree of electronic coocupy is strengthened, and the conductivity is improved. The dielectric function ε2(ω) results show that with the increase of Si doping concentration, the ability to stimulate conductive electrons first increases and then decreases, which is in good agreement with the quantitative analysis results of conductivity. The optical band gap increases and the absorption band edge rises slowly with the increase of Si doping concentration. The results of absorption spectra show that Si-doped <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> has strong deep ultraviolet photoelectric detection ability. The calculated results provide a theoretical reference for the further experimental investigation and the optimization innovation of Si-doped <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> and relative device design.\",\"PeriodicalId\":10252,\"journal\":{\"name\":\"Chinese Physics\",\"volume\":\"377 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7498/aps.72.20231147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7498/aps.72.20231147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了未掺杂和Si掺杂的<i>β</i>-Ga<sub>2</sub>O<sub>3</sub>采用基于密度泛函理论的GGA+U方法计算。结果表明,硅取代四面体Ga(1)在实验中更容易合成,得到的<i>β</i>- ga>sub>2</sub>O<sub>3</sub>带隙和Ga三维态峰与实验结果吻合较好,贫氧条件下更容易得到有效掺杂。Si掺杂后,总能带向低能端移动,费米能级进入导带,呈现n型导电特性。Si 3s轨道电子占据导带底部,电子占据程度增强,电导率提高。介电函数ε2(ω)结果表明,随着Si掺杂浓度的增加,激发导电电子的能力先增大后减小,这与电导率的定量分析结果吻合较好。随着Si掺杂浓度的增加,光学带隙增大,吸收带边缓慢上升。吸收光谱结果表明,si掺杂的<i>β</i>-Ga<sub>2</sub>O<sub>3</sub>具有较强的深紫外光电检测能力。计算结果为si掺杂<i>β</i>- ga>sub>2</sub>O<sub>3</sub>以及相关装置的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invesigation of the electronic structure and Optoelectronic properties of Si-doped <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> using GGA+U method based on first-principle
In this work, the formation energy, band structure, state density, differential charge density and optoelectronic properties of undoped and Si doped β-Ga2O3 are calculated using GGA+U method based on density functional theory. The results show that the Si-substituted tetrahedron Ga(1) is more easily synthesized in experiments, and the obtained β-Ga2O3 band gap and Ga 3d state peak are in good agreement with the experimental results, and the effective doping is more likely to be obtained under oxygen-poor conditions. After Si doping, the total energy band moves to the low-energy end, and Fermi level enters the conduction band, showing n-type conductive characterastic. Si 3s orbital electrons occupy the bottom of the conduction band, the degree of electronic coocupy is strengthened, and the conductivity is improved. The dielectric function ε2(ω) results show that with the increase of Si doping concentration, the ability to stimulate conductive electrons first increases and then decreases, which is in good agreement with the quantitative analysis results of conductivity. The optical band gap increases and the absorption band edge rises slowly with the increase of Si doping concentration. The results of absorption spectra show that Si-doped β-Ga2O3 has strong deep ultraviolet photoelectric detection ability. The calculated results provide a theoretical reference for the further experimental investigation and the optimization innovation of Si-doped β-Ga2O3 and relative device design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信