{"title":"持久超向位同调和持久超向位拉普拉斯算子","authors":"Dong Chen, Jian Liu, Jie Wu, Guo-Wei Wei","doi":"10.3934/fods.2023010","DOIUrl":null,"url":null,"abstract":"Hypergraphs are useful mathematical models for describing complex relationships among members of a structured graph, while hyperdigraphs serve as a generalization that can encode asymmetric relationships in the data. However, obtaining topological information directly from hyperdigraphs remains a challenge. To address this issue, we introduce hyperdigraph homology in this work. We also propose topological hyperdigraph Laplacians, which can extract both harmonic spectra and non-harmonic spectra from directed and internally organized data. Moreover, we introduce persistent hyperdigraph homology and persistent hyperdigraph Laplacians through filtration, enabling the capture of topological persistence and homotopic shape evolution of directed and structured data across multiple scales. The proposed methods offer new multiscale algebraic topology tools for topological data analysis.","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"92 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Persistent hyperdigraph homology and persistent hyperdigraph Laplacians\",\"authors\":\"Dong Chen, Jian Liu, Jie Wu, Guo-Wei Wei\",\"doi\":\"10.3934/fods.2023010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hypergraphs are useful mathematical models for describing complex relationships among members of a structured graph, while hyperdigraphs serve as a generalization that can encode asymmetric relationships in the data. However, obtaining topological information directly from hyperdigraphs remains a challenge. To address this issue, we introduce hyperdigraph homology in this work. We also propose topological hyperdigraph Laplacians, which can extract both harmonic spectra and non-harmonic spectra from directed and internally organized data. Moreover, we introduce persistent hyperdigraph homology and persistent hyperdigraph Laplacians through filtration, enabling the capture of topological persistence and homotopic shape evolution of directed and structured data across multiple scales. The proposed methods offer new multiscale algebraic topology tools for topological data analysis.\",\"PeriodicalId\":73054,\"journal\":{\"name\":\"Foundations of data science (Springfield, Mo.)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of data science (Springfield, Mo.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/fods.2023010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2023010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Persistent hyperdigraph homology and persistent hyperdigraph Laplacians
Hypergraphs are useful mathematical models for describing complex relationships among members of a structured graph, while hyperdigraphs serve as a generalization that can encode asymmetric relationships in the data. However, obtaining topological information directly from hyperdigraphs remains a challenge. To address this issue, we introduce hyperdigraph homology in this work. We also propose topological hyperdigraph Laplacians, which can extract both harmonic spectra and non-harmonic spectra from directed and internally organized data. Moreover, we introduce persistent hyperdigraph homology and persistent hyperdigraph Laplacians through filtration, enabling the capture of topological persistence and homotopic shape evolution of directed and structured data across multiple scales. The proposed methods offer new multiscale algebraic topology tools for topological data analysis.