一种基于ode的贝叶斯优化神经网络

IF 0.4 Q4 MATHEMATICS, APPLIED
Hirotada Honda, Takashi Sano, Shugo Nakamura, Mitsuaki Ueno, Hiroki Hanazawa, Nguyen Manh Duc Tuan
{"title":"一种基于ode的贝叶斯优化神经网络","authors":"Hirotada Honda, Takashi Sano, Shugo Nakamura, Mitsuaki Ueno, Hiroki Hanazawa, Nguyen Manh Duc Tuan","doi":"10.14495/jsiaml.15.101","DOIUrl":null,"url":null,"abstract":"An application of the Bayesian optimization to an ordinary differential equation-based neural network is proposed. The loss function was considered as a black box function of the coefficients, and Bayesian optimization was applied to obtain desirable parameter values. The proposed method drastically simplifies the implementation because the adjoint method-based updating of coefficients is not required. Numerical experiments demonstrate that the performance of the proposed method is comparable to that of existing methods.","PeriodicalId":42099,"journal":{"name":"JSIAM Letters","volume":"79 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An ODE-based neural network with Bayesian optimization\",\"authors\":\"Hirotada Honda, Takashi Sano, Shugo Nakamura, Mitsuaki Ueno, Hiroki Hanazawa, Nguyen Manh Duc Tuan\",\"doi\":\"10.14495/jsiaml.15.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An application of the Bayesian optimization to an ordinary differential equation-based neural network is proposed. The loss function was considered as a black box function of the coefficients, and Bayesian optimization was applied to obtain desirable parameter values. The proposed method drastically simplifies the implementation because the adjoint method-based updating of coefficients is not required. Numerical experiments demonstrate that the performance of the proposed method is comparable to that of existing methods.\",\"PeriodicalId\":42099,\"journal\":{\"name\":\"JSIAM Letters\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JSIAM Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14495/jsiaml.15.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JSIAM Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14495/jsiaml.15.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

提出了贝叶斯优化在常微分方程神经网络中的应用。将损失函数视为系数的黑盒函数,并采用贝叶斯优化方法获得理想的参数值。由于不需要基于伴随方法的系数更新,该方法大大简化了实现过程。数值实验表明,该方法的性能与现有方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An ODE-based neural network with Bayesian optimization
An application of the Bayesian optimization to an ordinary differential equation-based neural network is proposed. The loss function was considered as a black box function of the coefficients, and Bayesian optimization was applied to obtain desirable parameter values. The proposed method drastically simplifies the implementation because the adjoint method-based updating of coefficients is not required. Numerical experiments demonstrate that the performance of the proposed method is comparable to that of existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JSIAM Letters
JSIAM Letters MATHEMATICS, APPLIED-
自引率
25.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信