{"title":"一种基于ode的贝叶斯优化神经网络","authors":"Hirotada Honda, Takashi Sano, Shugo Nakamura, Mitsuaki Ueno, Hiroki Hanazawa, Nguyen Manh Duc Tuan","doi":"10.14495/jsiaml.15.101","DOIUrl":null,"url":null,"abstract":"An application of the Bayesian optimization to an ordinary differential equation-based neural network is proposed. The loss function was considered as a black box function of the coefficients, and Bayesian optimization was applied to obtain desirable parameter values. The proposed method drastically simplifies the implementation because the adjoint method-based updating of coefficients is not required. Numerical experiments demonstrate that the performance of the proposed method is comparable to that of existing methods.","PeriodicalId":42099,"journal":{"name":"JSIAM Letters","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An ODE-based neural network with Bayesian optimization\",\"authors\":\"Hirotada Honda, Takashi Sano, Shugo Nakamura, Mitsuaki Ueno, Hiroki Hanazawa, Nguyen Manh Duc Tuan\",\"doi\":\"10.14495/jsiaml.15.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An application of the Bayesian optimization to an ordinary differential equation-based neural network is proposed. The loss function was considered as a black box function of the coefficients, and Bayesian optimization was applied to obtain desirable parameter values. The proposed method drastically simplifies the implementation because the adjoint method-based updating of coefficients is not required. Numerical experiments demonstrate that the performance of the proposed method is comparable to that of existing methods.\",\"PeriodicalId\":42099,\"journal\":{\"name\":\"JSIAM Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JSIAM Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14495/jsiaml.15.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JSIAM Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14495/jsiaml.15.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An ODE-based neural network with Bayesian optimization
An application of the Bayesian optimization to an ordinary differential equation-based neural network is proposed. The loss function was considered as a black box function of the coefficients, and Bayesian optimization was applied to obtain desirable parameter values. The proposed method drastically simplifies the implementation because the adjoint method-based updating of coefficients is not required. Numerical experiments demonstrate that the performance of the proposed method is comparable to that of existing methods.