Doni Tri Putra Yanto, Ravil Akhmadeev, Hassan Salman Hamad, Ahmed Hussien Radie Alawadi, Abror Bozarboyevich Abdullayev, Rosario Mireya Romero-Parra, Hadi Fooladi
{"title":"燃料电池与太阳能相结合的煤气化电厂污染物减排工艺的开发与研究","authors":"Doni Tri Putra Yanto, Ravil Akhmadeev, Hassan Salman Hamad, Ahmed Hussien Radie Alawadi, Abror Bozarboyevich Abdullayev, Rosario Mireya Romero-Parra, Hadi Fooladi","doi":"10.1093/ijlct/ctad093","DOIUrl":null,"url":null,"abstract":"Abstract Even though coal resources are the most abundant among fossil fuels, coal-fired plants release large amounts of greenhouse gases into the atmosphere. In this regard, reducing environmental challenges and crises caused by coal burning can be a promising option to reduce today's crises in the energy field. The integration of coal-fired plants with renewable-driven energy systems can simultaneously improve thermodynamic performance and reduce pollutants emission rates. This article presents the thermodynamic and pollutant emission investigations of a new coal-fired plant coupled with a linear Fresnel solar collector (LFSC)-driven solar unit, a parabolic trough solar collector (PTSC)-driven solar unit, a high-temperature fuel cell stack (molten carbonate fuel cell stack [MCFCS]) and a heat recovery system (based on the steam turbine and gas turbine-based power cycles). The plant is able to produce electricity and hot water (HW). The main structure of the offered plant is based on coal, whereas, is coupled with renewables-based cycles to mitigate environmental impacts. The plant could generate ~ 207 MW of power and 3728 m3/h of HW. In such conditions, the energy efficiency of 73.1% and exergy efficiency of 44.18% could be achievable. Further, the emitted gas rates of the plant were nearly 403 tons/h. A comprehensive comparison is also presented for the plant's behavior under different types of coal (petcoke and anthracite). In addition, a two-function optimization is developed to determine the maximum value of exergy efficiency and the minimum value of total pollutants emission rate.","PeriodicalId":14118,"journal":{"name":"International Journal of Low-carbon Technologies","volume":"12 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and investigation of a pollutants emission reduction process from a coal-gasification power plant integrated with fuel cell and solar energy\",\"authors\":\"Doni Tri Putra Yanto, Ravil Akhmadeev, Hassan Salman Hamad, Ahmed Hussien Radie Alawadi, Abror Bozarboyevich Abdullayev, Rosario Mireya Romero-Parra, Hadi Fooladi\",\"doi\":\"10.1093/ijlct/ctad093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Even though coal resources are the most abundant among fossil fuels, coal-fired plants release large amounts of greenhouse gases into the atmosphere. In this regard, reducing environmental challenges and crises caused by coal burning can be a promising option to reduce today's crises in the energy field. The integration of coal-fired plants with renewable-driven energy systems can simultaneously improve thermodynamic performance and reduce pollutants emission rates. This article presents the thermodynamic and pollutant emission investigations of a new coal-fired plant coupled with a linear Fresnel solar collector (LFSC)-driven solar unit, a parabolic trough solar collector (PTSC)-driven solar unit, a high-temperature fuel cell stack (molten carbonate fuel cell stack [MCFCS]) and a heat recovery system (based on the steam turbine and gas turbine-based power cycles). The plant is able to produce electricity and hot water (HW). The main structure of the offered plant is based on coal, whereas, is coupled with renewables-based cycles to mitigate environmental impacts. The plant could generate ~ 207 MW of power and 3728 m3/h of HW. In such conditions, the energy efficiency of 73.1% and exergy efficiency of 44.18% could be achievable. Further, the emitted gas rates of the plant were nearly 403 tons/h. A comprehensive comparison is also presented for the plant's behavior under different types of coal (petcoke and anthracite). In addition, a two-function optimization is developed to determine the maximum value of exergy efficiency and the minimum value of total pollutants emission rate.\",\"PeriodicalId\":14118,\"journal\":{\"name\":\"International Journal of Low-carbon Technologies\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Low-carbon Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ijlct/ctad093\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Low-carbon Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ijlct/ctad093","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Development and investigation of a pollutants emission reduction process from a coal-gasification power plant integrated with fuel cell and solar energy
Abstract Even though coal resources are the most abundant among fossil fuels, coal-fired plants release large amounts of greenhouse gases into the atmosphere. In this regard, reducing environmental challenges and crises caused by coal burning can be a promising option to reduce today's crises in the energy field. The integration of coal-fired plants with renewable-driven energy systems can simultaneously improve thermodynamic performance and reduce pollutants emission rates. This article presents the thermodynamic and pollutant emission investigations of a new coal-fired plant coupled with a linear Fresnel solar collector (LFSC)-driven solar unit, a parabolic trough solar collector (PTSC)-driven solar unit, a high-temperature fuel cell stack (molten carbonate fuel cell stack [MCFCS]) and a heat recovery system (based on the steam turbine and gas turbine-based power cycles). The plant is able to produce electricity and hot water (HW). The main structure of the offered plant is based on coal, whereas, is coupled with renewables-based cycles to mitigate environmental impacts. The plant could generate ~ 207 MW of power and 3728 m3/h of HW. In such conditions, the energy efficiency of 73.1% and exergy efficiency of 44.18% could be achievable. Further, the emitted gas rates of the plant were nearly 403 tons/h. A comprehensive comparison is also presented for the plant's behavior under different types of coal (petcoke and anthracite). In addition, a two-function optimization is developed to determine the maximum value of exergy efficiency and the minimum value of total pollutants emission rate.
期刊介绍:
The International Journal of Low-Carbon Technologies is a quarterly publication concerned with the challenge of climate change and its effects on the built environment and sustainability. The Journal publishes original, quality research papers on issues of climate change, sustainable development and the built environment related to architecture, building services engineering, civil engineering, building engineering, urban design and other disciplines. It features in-depth articles, technical notes, review papers, book reviews and special issues devoted to international conferences. The journal encourages submissions related to interdisciplinary research in the built environment. The journal is available in paper and electronic formats. All articles are peer-reviewed by leading experts in the field.