结构性断裂下资产收益可预测性的新检验

IF 1.8 3区 经济学 Q2 BUSINESS, FINANCE
Zongwu Cai, Seong Yeon Chang
{"title":"结构性断裂下资产收益可预测性的新检验","authors":"Zongwu Cai, Seong Yeon Chang","doi":"10.1093/jjfinec/nbad018","DOIUrl":null,"url":null,"abstract":"This article considers predictive regressions in which a structural break is allowed on an unknown date. We establish novel testing procedures for asset return predictability using empirical likelihood (EL) methods based on weighted score equations. The theoretical results are useful in practice because our unified framework does not require distinguishing whether the predictor variables are stationary or non-stationary. Monte Carlo simulation studies show that the EL-based tests perform well in terms of size and power in finite samples. Finally, as an empirical analysis, we test the predictability of the monthly S&P 500 value-weighted log excess return using various predictor variables.","PeriodicalId":47596,"journal":{"name":"Journal of Financial Econometrics","volume":"43 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Test on Asset Return Predictability with Structural Breaks\",\"authors\":\"Zongwu Cai, Seong Yeon Chang\",\"doi\":\"10.1093/jjfinec/nbad018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article considers predictive regressions in which a structural break is allowed on an unknown date. We establish novel testing procedures for asset return predictability using empirical likelihood (EL) methods based on weighted score equations. The theoretical results are useful in practice because our unified framework does not require distinguishing whether the predictor variables are stationary or non-stationary. Monte Carlo simulation studies show that the EL-based tests perform well in terms of size and power in finite samples. Finally, as an empirical analysis, we test the predictability of the monthly S&P 500 value-weighted log excess return using various predictor variables.\",\"PeriodicalId\":47596,\"journal\":{\"name\":\"Journal of Financial Econometrics\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Financial Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jjfinec/nbad018\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Financial Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jjfinec/nbad018","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑在未知日期允许结构中断的预测回归。我们利用基于加权分数方程的经验似然(EL)方法建立了新的资产回报可预测性测试程序。理论结果在实践中是有用的,因为我们的统一框架不需要区分预测变量是平稳的还是非平稳的。蒙特卡罗仿真研究表明,基于el的测试在有限样本的大小和功率方面表现良好。最后,作为实证分析,我们使用不同的预测变量检验了月度标准普尔500指数价值加权对数超额收益的可预测性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Test on Asset Return Predictability with Structural Breaks
This article considers predictive regressions in which a structural break is allowed on an unknown date. We establish novel testing procedures for asset return predictability using empirical likelihood (EL) methods based on weighted score equations. The theoretical results are useful in practice because our unified framework does not require distinguishing whether the predictor variables are stationary or non-stationary. Monte Carlo simulation studies show that the EL-based tests perform well in terms of size and power in finite samples. Finally, as an empirical analysis, we test the predictability of the monthly S&P 500 value-weighted log excess return using various predictor variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
8.00%
发文量
39
期刊介绍: "The Journal of Financial Econometrics is well situated to become the premier journal in its field. It has started with an excellent first year and I expect many more."
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信