Retweet-BERT:基于语言特征和社交网络信息扩散的政治倾向检测

Julie Jiang, Xiang Ren, Emilio Ferrara
{"title":"Retweet-BERT:基于语言特征和社交网络信息扩散的政治倾向检测","authors":"Julie Jiang, Xiang Ren, Emilio Ferrara","doi":"10.1609/icwsm.v17i1.22160","DOIUrl":null,"url":null,"abstract":"Estimating the political leanings of social media users is a challenging and ever more pressing problem given the increase in social media consumption. We introduce Retweet-BERT, a simple and scalable model to estimate the political leanings of Twitter users. Retweet-BERT leverages the retweet network structure and the language used in users' profile descriptions. Our assumptions stem from patterns of networks and linguistics homophily among people who share similar ideologies. Retweet-BERT demonstrates competitive performance against other state-of-the-art baselines, achieving 96%-97% macro-F1 on two recent Twitter datasets (a COVID-19 dataset and a 2020 United States presidential elections dataset). We also perform manual validation to validate the performance of Retweet-BERT on users not in the training data. Finally, in a case study of COVID-19, we illustrate the presence of political echo chambers on Twitter and show that it exists primarily among right-leaning users. Our code is open-sourced and our data is publicly available.","PeriodicalId":338112,"journal":{"name":"Proceedings of the International AAAI Conference on Web and Social Media","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retweet-BERT: Political Leaning Detection Using Language Features and Information Diffusion on Social Networks\",\"authors\":\"Julie Jiang, Xiang Ren, Emilio Ferrara\",\"doi\":\"10.1609/icwsm.v17i1.22160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the political leanings of social media users is a challenging and ever more pressing problem given the increase in social media consumption. We introduce Retweet-BERT, a simple and scalable model to estimate the political leanings of Twitter users. Retweet-BERT leverages the retweet network structure and the language used in users' profile descriptions. Our assumptions stem from patterns of networks and linguistics homophily among people who share similar ideologies. Retweet-BERT demonstrates competitive performance against other state-of-the-art baselines, achieving 96%-97% macro-F1 on two recent Twitter datasets (a COVID-19 dataset and a 2020 United States presidential elections dataset). We also perform manual validation to validate the performance of Retweet-BERT on users not in the training data. Finally, in a case study of COVID-19, we illustrate the presence of political echo chambers on Twitter and show that it exists primarily among right-leaning users. Our code is open-sourced and our data is publicly available.\",\"PeriodicalId\":338112,\"journal\":{\"name\":\"Proceedings of the International AAAI Conference on Web and Social Media\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International AAAI Conference on Web and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icwsm.v17i1.22160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International AAAI Conference on Web and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v17i1.22160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

鉴于社交媒体消费的增加,估计社交媒体用户的政治倾向是一个具有挑战性和日益紧迫的问题。我们介绍了rettweet - bert,一个简单且可扩展的模型来估计Twitter用户的政治倾向。rettweet - bert利用了转发网络结构和用户配置文件描述中使用的语言。我们的假设源于意识形态相似的人之间的网络模式和语言同质性。rettweet - bert与其他最先进的基线相比表现出竞争力,在两个最近的Twitter数据集(新冠肺炎数据集和2020年美国总统选举数据集)上实现了96%-97%的宏观f1。我们还执行手动验证来验证rettweet - bert对不在训练数据中的用户的性能。最后,在COVID-19的案例研究中,我们说明了Twitter上政治回音室的存在,并表明它主要存在于右倾用户中。我们的代码是开源的,我们的数据是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retweet-BERT: Political Leaning Detection Using Language Features and Information Diffusion on Social Networks
Estimating the political leanings of social media users is a challenging and ever more pressing problem given the increase in social media consumption. We introduce Retweet-BERT, a simple and scalable model to estimate the political leanings of Twitter users. Retweet-BERT leverages the retweet network structure and the language used in users' profile descriptions. Our assumptions stem from patterns of networks and linguistics homophily among people who share similar ideologies. Retweet-BERT demonstrates competitive performance against other state-of-the-art baselines, achieving 96%-97% macro-F1 on two recent Twitter datasets (a COVID-19 dataset and a 2020 United States presidential elections dataset). We also perform manual validation to validate the performance of Retweet-BERT on users not in the training data. Finally, in a case study of COVID-19, we illustrate the presence of political echo chambers on Twitter and show that it exists primarily among right-leaning users. Our code is open-sourced and our data is publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信