模拟2型糖尿病合并阿尔茨海默病的生理状态和条件的比较。对细胞增殖、H2O2、Aβ42、S100A8、S100B水平、神经元突出和神经发生的影响

IF 0.4 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Adriana Kubis-Kubiak, Benita Wiatrak, Agnieszka Piwowar
{"title":"模拟2型糖尿病合并阿尔茨海默病的生理状态和条件的比较。对细胞增殖、H2O2、Aβ42、S100A8、S100B水平、神经元突出和神经发生的影响","authors":"Adriana Kubis-Kubiak, Benita Wiatrak, Agnieszka Piwowar","doi":"10.32383/appdr/171296","DOIUrl":null,"url":null,"abstract":"Abstract Aim: Recent studies demonstrate that individuals with T2DM more likely to develop AD. While, disturbed glucose or insulin homeostasis, are at the forefront of AD research, not much is known about extra- and intracellular interplay between different forms of Aβ and microenviromental fluctuations of glucose or insulin concentrations in neuronal cells. Methods: We create conditions imitating the coexistence of T2DM with AD and compare the results with state where the neuropathological changes are yet not developed. We have investigated the effect of the physiological (Aβ40) and toxic amyloid form (Aβ25–35) and its co-incubation with glucose or insulin on neuronal proliferation, H2O2, Aβ42, S100B, S100A8 protein concentrations, mature neuronal protrusions and neurogenesis. Results: Aβ40 and Aβ25-35 with hyperglycaemia provoked stronger cytotoxic effect comparing to Aβ alone, while hyperinsulinemia dampen this effect. Opposite results were obtained in H2O2 measurement. Insulin stimulated Aβ42 generation when co-incubated with both Aβ forms. Aβ40 and Aβ25-35 caused similar pattern of extracellular S100B protein influx an concomitant cytosolic efflux. Neuronal protrusions and neurogenesis were initiated by co-incubation of Aβ40 with hyperglycaemia while reduced in Aβ25-35 and hyperglycemia or insulinemia. Significance: Our finding suggest that for understanding the biochemical origins of neuropathological amyloid β progression and potential involvement of metabolic disturbances in this process, it’s crucial to gasp preliminary interactions on cellular level. Our data can lead to hypothesis that S100B protein could be a potential modulator as well as indicator of prodromal neuropathological alterations.","PeriodicalId":7147,"journal":{"name":"Acta poloniae pharmaceutica","volume":"237 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of physiological state and conditions imitating the comorbidity of type 2 diabetes with Alzheimer's disease. The impact on: proliferation, H2O2, Aβ42, S100A8, S100B levels, neuronal protrusion and neurogenesis\",\"authors\":\"Adriana Kubis-Kubiak, Benita Wiatrak, Agnieszka Piwowar\",\"doi\":\"10.32383/appdr/171296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Aim: Recent studies demonstrate that individuals with T2DM more likely to develop AD. While, disturbed glucose or insulin homeostasis, are at the forefront of AD research, not much is known about extra- and intracellular interplay between different forms of Aβ and microenviromental fluctuations of glucose or insulin concentrations in neuronal cells. Methods: We create conditions imitating the coexistence of T2DM with AD and compare the results with state where the neuropathological changes are yet not developed. We have investigated the effect of the physiological (Aβ40) and toxic amyloid form (Aβ25–35) and its co-incubation with glucose or insulin on neuronal proliferation, H2O2, Aβ42, S100B, S100A8 protein concentrations, mature neuronal protrusions and neurogenesis. Results: Aβ40 and Aβ25-35 with hyperglycaemia provoked stronger cytotoxic effect comparing to Aβ alone, while hyperinsulinemia dampen this effect. Opposite results were obtained in H2O2 measurement. Insulin stimulated Aβ42 generation when co-incubated with both Aβ forms. Aβ40 and Aβ25-35 caused similar pattern of extracellular S100B protein influx an concomitant cytosolic efflux. Neuronal protrusions and neurogenesis were initiated by co-incubation of Aβ40 with hyperglycaemia while reduced in Aβ25-35 and hyperglycemia or insulinemia. Significance: Our finding suggest that for understanding the biochemical origins of neuropathological amyloid β progression and potential involvement of metabolic disturbances in this process, it’s crucial to gasp preliminary interactions on cellular level. Our data can lead to hypothesis that S100B protein could be a potential modulator as well as indicator of prodromal neuropathological alterations.\",\"PeriodicalId\":7147,\"journal\":{\"name\":\"Acta poloniae pharmaceutica\",\"volume\":\"237 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta poloniae pharmaceutica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32383/appdr/171296\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta poloniae pharmaceutica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32383/appdr/171296","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

摘要目的:最近的研究表明,T2DM患者更容易发生AD。虽然,葡萄糖或胰岛素稳态紊乱是阿尔茨海默病研究的前沿,但对于不同形式的Aβ与神经元细胞中葡萄糖或胰岛素浓度微环境波动之间的细胞外和细胞内相互作用知之甚少。方法:模拟2型糖尿病与AD共存的条件,并与未发生神经病变的状态进行比较。我们研究了生理性(Aβ40)和毒性淀粉样蛋白(Aβ25-35)及其与葡萄糖或胰岛素共孵育对神经元增殖、H2O2、Aβ42、S100B、S100A8蛋白浓度、成熟神经元突起和神经发生的影响。结果:Aβ40和Aβ25-35合并高血糖比单独使用Aβ具有更强的细胞毒作用,而高胰岛素血症抑制了这种作用。在H2O2测量中得到相反的结果。当与两种Aβ形式共孵育时,胰岛素刺激Aβ42的产生。Aβ40和Aβ25-35引起细胞外S100B蛋白内流和伴随的胞质外排的相似模式。Aβ40与高血糖共孵育可引发神经元突起和神经发生,而Aβ25-35与高血糖或胰岛素血症共孵育可减少神经元突起和神经发生。意义:我们的发现表明,为了了解神经病理β淀粉样蛋白进展的生化起源和代谢紊乱在这一过程中的潜在参与,在细胞水平上进行初步的相互作用是至关重要的。我们的数据可以提出S100B蛋白可能是前驱神经病理改变的潜在调节剂和指标的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of physiological state and conditions imitating the comorbidity of type 2 diabetes with Alzheimer's disease. The impact on: proliferation, H2O2, Aβ42, S100A8, S100B levels, neuronal protrusion and neurogenesis
Abstract Aim: Recent studies demonstrate that individuals with T2DM more likely to develop AD. While, disturbed glucose or insulin homeostasis, are at the forefront of AD research, not much is known about extra- and intracellular interplay between different forms of Aβ and microenviromental fluctuations of glucose or insulin concentrations in neuronal cells. Methods: We create conditions imitating the coexistence of T2DM with AD and compare the results with state where the neuropathological changes are yet not developed. We have investigated the effect of the physiological (Aβ40) and toxic amyloid form (Aβ25–35) and its co-incubation with glucose or insulin on neuronal proliferation, H2O2, Aβ42, S100B, S100A8 protein concentrations, mature neuronal protrusions and neurogenesis. Results: Aβ40 and Aβ25-35 with hyperglycaemia provoked stronger cytotoxic effect comparing to Aβ alone, while hyperinsulinemia dampen this effect. Opposite results were obtained in H2O2 measurement. Insulin stimulated Aβ42 generation when co-incubated with both Aβ forms. Aβ40 and Aβ25-35 caused similar pattern of extracellular S100B protein influx an concomitant cytosolic efflux. Neuronal protrusions and neurogenesis were initiated by co-incubation of Aβ40 with hyperglycaemia while reduced in Aβ25-35 and hyperglycemia or insulinemia. Significance: Our finding suggest that for understanding the biochemical origins of neuropathological amyloid β progression and potential involvement of metabolic disturbances in this process, it’s crucial to gasp preliminary interactions on cellular level. Our data can lead to hypothesis that S100B protein could be a potential modulator as well as indicator of prodromal neuropathological alterations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
74
审稿时长
6-12 weeks
期刊介绍: The international journal of the Polish Pharmaceutical Society is published in 6 issues a year. The journal offers Open Access publication of original research papers, short communications and reviews written in English, in all areas of pharmaceutical sciences. The following areas of pharmaceutical sciences are covered: Analysis, Biopharmacy, Drug Biochemistry, Drug Synthesis, Natural Drugs, Pharmaceutical Technology, Pharmacology and General. A bimonthly appearing in English since 1994, which continues “Acta Poloniae Pharmaceutica”, whose first issue appeared in December 1937. The war halted the activity of the journal’s creators. Issuance of “Acta Poloniae Pharmaceutica” was resumed in 1947. From 1947 the journal appeared irregularly, initially as a quarterly, then a bimonthly. In the years 1963 – 1973 alongside the Polish version appeared the English edition of the journal. Starting from 1974 only works in English are published in the journal. Since 1995 the journal has been appearing very regularly in two-month intervals (six books a year). The journal publishes original works from all fields of pharmacy, summaries of postdoctoral dissertations and laboratory notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信