{"title":"单向纤维增强土工复合材料力学性能的尺寸无关弯曲试验技术","authors":"Hung Tran Doan, Dora Kroisova, Oleg Bortnovsky","doi":"10.3390/ceramics6040126","DOIUrl":null,"url":null,"abstract":"In assessing the bending attributes for geopolymer composites augmented with uni-directional fibers, methodologies aligned with the established American and European standards yield quantifiable values for flexural strength, denoted as σm*, and its corresponding elasticity modulus, E*. Notably, these values exhibit a pronounced dependency on the size of the testing parameters. Specifically, within a judicious range of support span L relative to specimen height H, spanning a ratio of 10 to 40, these metrics can vary by a factor between 2 and 4. By conducting evaluations across an extensive array of H/L ratios and adhering to the protocols set for comparable composites with a plastic matrix, it becomes feasible to determine the definitive flexural elastic modulus E and shear modulus G, both of which can be viewed as size-neutral material traits. A parallel methodology can be employed to deduce size-agnostic values for flexural strength, σm. The established linear relationship between the inverse practical value E* (1/E*) and the squared ratio (H/L)2 is acknowledged. However, a congruent 1/σm* relationship has been recently corroborated experimentally, aligning primarily with Tarnopolsky’s theoretical propositions. The parameter T, defined as the inverse gradient of 1/σm* about (H/L)2, is integral to these findings. Furthermore, the significance of the loading displacement rate is underscored, necessitating a tailored consideration for different scenarios.","PeriodicalId":33263,"journal":{"name":"Ceramics-Switzerland","volume":"56 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size-Independent Flexure Test Technique for the Mechanical Properties of Geocomposites Reinforced by Unidirectional Fibers\",\"authors\":\"Hung Tran Doan, Dora Kroisova, Oleg Bortnovsky\",\"doi\":\"10.3390/ceramics6040126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In assessing the bending attributes for geopolymer composites augmented with uni-directional fibers, methodologies aligned with the established American and European standards yield quantifiable values for flexural strength, denoted as σm*, and its corresponding elasticity modulus, E*. Notably, these values exhibit a pronounced dependency on the size of the testing parameters. Specifically, within a judicious range of support span L relative to specimen height H, spanning a ratio of 10 to 40, these metrics can vary by a factor between 2 and 4. By conducting evaluations across an extensive array of H/L ratios and adhering to the protocols set for comparable composites with a plastic matrix, it becomes feasible to determine the definitive flexural elastic modulus E and shear modulus G, both of which can be viewed as size-neutral material traits. A parallel methodology can be employed to deduce size-agnostic values for flexural strength, σm. The established linear relationship between the inverse practical value E* (1/E*) and the squared ratio (H/L)2 is acknowledged. However, a congruent 1/σm* relationship has been recently corroborated experimentally, aligning primarily with Tarnopolsky’s theoretical propositions. The parameter T, defined as the inverse gradient of 1/σm* about (H/L)2, is integral to these findings. Furthermore, the significance of the loading displacement rate is underscored, necessitating a tailored consideration for different scenarios.\",\"PeriodicalId\":33263,\"journal\":{\"name\":\"Ceramics-Switzerland\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramics-Switzerland\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ceramics6040126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics-Switzerland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ceramics6040126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Size-Independent Flexure Test Technique for the Mechanical Properties of Geocomposites Reinforced by Unidirectional Fibers
In assessing the bending attributes for geopolymer composites augmented with uni-directional fibers, methodologies aligned with the established American and European standards yield quantifiable values for flexural strength, denoted as σm*, and its corresponding elasticity modulus, E*. Notably, these values exhibit a pronounced dependency on the size of the testing parameters. Specifically, within a judicious range of support span L relative to specimen height H, spanning a ratio of 10 to 40, these metrics can vary by a factor between 2 and 4. By conducting evaluations across an extensive array of H/L ratios and adhering to the protocols set for comparable composites with a plastic matrix, it becomes feasible to determine the definitive flexural elastic modulus E and shear modulus G, both of which can be viewed as size-neutral material traits. A parallel methodology can be employed to deduce size-agnostic values for flexural strength, σm. The established linear relationship between the inverse practical value E* (1/E*) and the squared ratio (H/L)2 is acknowledged. However, a congruent 1/σm* relationship has been recently corroborated experimentally, aligning primarily with Tarnopolsky’s theoretical propositions. The parameter T, defined as the inverse gradient of 1/σm* about (H/L)2, is integral to these findings. Furthermore, the significance of the loading displacement rate is underscored, necessitating a tailored consideration for different scenarios.