基于Swin变压器的糖尿病视网膜病变多小波分类

Rasha Ali Dihin, Ebtesam AlShemmary, Waleed Al-Jawher
{"title":"基于Swin变压器的糖尿病视网膜病变多小波分类","authors":"Rasha Ali Dihin, Ebtesam AlShemmary, Waleed Al-Jawher","doi":"10.31642/jokmc/2018/100225","DOIUrl":null,"url":null,"abstract":"Diabetic retinopathy (DR) impacts over a third of individuals diagnosed with diabetes and stands as the leading cause of vision loss in working-age adults worldwide. Therefore, the early detection and treatment of DR can play a crucial role in minimizing vision loss. This research paper proposes a novel technique that combines Wavelet and multi-Wavelet transforms with Swin Transformer to automatically identify the progression level of diabetic retinopathy. A notable innovation of this study lies in the implementation of the multi-Wavelet transform for extracting relevant features. By incorporating the resulting images into the Swin Transformer model, a unique approach is introduced during the feature extraction phase. The researchers conducted experiments using the publicly available Kaggle APTOS 2019 dataset, which comprises 3662 images. The achieved training accuracy in the experiments was an impressive 97.78%, with a test accuracy of 97.54%. The highest accuracy observed during training reached 98.09%. In comparison, when applying the multi-Wavelet approach to multiclass classification, the training and validation accuracies were 91.60% and 82.42%, respectively, with a testing accuracy of 82%. These results indicate that the multi-Wavelet approach outperforms alternative methods in the study. The model demonstrated exceptional performance in binary classification tasks, exhibiting high accuracies on both the training and test sets. However, it is important to note that the model's accuracy decreased when employed in multiclass classification, emphasizing the need for further investigation and refinement to handle more diverse classification scenarios.","PeriodicalId":499493,"journal":{"name":"Journal of Kufa for Mathematics and Computer","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diabetic Retinopathy Classification Using Swin Transformer with Multi Wavelet\",\"authors\":\"Rasha Ali Dihin, Ebtesam AlShemmary, Waleed Al-Jawher\",\"doi\":\"10.31642/jokmc/2018/100225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic retinopathy (DR) impacts over a third of individuals diagnosed with diabetes and stands as the leading cause of vision loss in working-age adults worldwide. Therefore, the early detection and treatment of DR can play a crucial role in minimizing vision loss. This research paper proposes a novel technique that combines Wavelet and multi-Wavelet transforms with Swin Transformer to automatically identify the progression level of diabetic retinopathy. A notable innovation of this study lies in the implementation of the multi-Wavelet transform for extracting relevant features. By incorporating the resulting images into the Swin Transformer model, a unique approach is introduced during the feature extraction phase. The researchers conducted experiments using the publicly available Kaggle APTOS 2019 dataset, which comprises 3662 images. The achieved training accuracy in the experiments was an impressive 97.78%, with a test accuracy of 97.54%. The highest accuracy observed during training reached 98.09%. In comparison, when applying the multi-Wavelet approach to multiclass classification, the training and validation accuracies were 91.60% and 82.42%, respectively, with a testing accuracy of 82%. These results indicate that the multi-Wavelet approach outperforms alternative methods in the study. The model demonstrated exceptional performance in binary classification tasks, exhibiting high accuracies on both the training and test sets. However, it is important to note that the model's accuracy decreased when employed in multiclass classification, emphasizing the need for further investigation and refinement to handle more diverse classification scenarios.\",\"PeriodicalId\":499493,\"journal\":{\"name\":\"Journal of Kufa for Mathematics and Computer\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Kufa for Mathematics and Computer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31642/jokmc/2018/100225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Kufa for Mathematics and Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31642/jokmc/2018/100225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病视网膜病变(DR)影响着超过三分之一的糖尿病患者,是全世界工作年龄成年人视力丧失的主要原因。因此,早期发现和治疗DR对减少视力丧失起着至关重要的作用。本文提出了一种结合小波变换和多小波变换的Swin变压器自动识别糖尿病视网膜病变进展水平的新方法。本研究的一个显著创新之处在于采用多小波变换提取相关特征。通过将结果图像合并到Swin Transformer模型中,在特征提取阶段引入了一种独特的方法。研究人员使用公开的Kaggle APTOS 2019数据集进行了实验,该数据集包含3662张图像。实验中实现的训练准确率达到了惊人的97.78%,测试准确率达到了97.54%。在训练期间观察到的最高准确率达到98.09%。将多小波方法应用于多类分类时,训练和验证准确率分别为91.60%和82.42%,测试准确率为82%。这些结果表明,多小波方法在研究中优于其他方法。该模型在二元分类任务中表现出优异的性能,在训练集和测试集上都表现出很高的准确率。然而,值得注意的是,该模型在用于多类分类时的准确性有所下降,这强调了需要进一步研究和改进以处理更多样化的分类场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diabetic Retinopathy Classification Using Swin Transformer with Multi Wavelet
Diabetic retinopathy (DR) impacts over a third of individuals diagnosed with diabetes and stands as the leading cause of vision loss in working-age adults worldwide. Therefore, the early detection and treatment of DR can play a crucial role in minimizing vision loss. This research paper proposes a novel technique that combines Wavelet and multi-Wavelet transforms with Swin Transformer to automatically identify the progression level of diabetic retinopathy. A notable innovation of this study lies in the implementation of the multi-Wavelet transform for extracting relevant features. By incorporating the resulting images into the Swin Transformer model, a unique approach is introduced during the feature extraction phase. The researchers conducted experiments using the publicly available Kaggle APTOS 2019 dataset, which comprises 3662 images. The achieved training accuracy in the experiments was an impressive 97.78%, with a test accuracy of 97.54%. The highest accuracy observed during training reached 98.09%. In comparison, when applying the multi-Wavelet approach to multiclass classification, the training and validation accuracies were 91.60% and 82.42%, respectively, with a testing accuracy of 82%. These results indicate that the multi-Wavelet approach outperforms alternative methods in the study. The model demonstrated exceptional performance in binary classification tasks, exhibiting high accuracies on both the training and test sets. However, it is important to note that the model's accuracy decreased when employed in multiclass classification, emphasizing the need for further investigation and refinement to handle more diverse classification scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信