Syed F.A. GILLANI, Adnan RASHEED, Yasir MAJEED, Shamshad S. BUKHARI, Huma TARIQ, None Shafiq-Ur-REHMAN, Zhan-Wu GAO
{"title":"玉米(Zea mays L.)种子大小相关基因挖掘与功能分析","authors":"Syed F.A. GILLANI, Adnan RASHEED, Yasir MAJEED, Shamshad S. BUKHARI, Huma TARIQ, None Shafiq-Ur-REHMAN, Zhan-Wu GAO","doi":"10.15835/nbha51312659","DOIUrl":null,"url":null,"abstract":"Maize has widely been studied as a model of plant-growth promoting rhizobacteria (PGPR). Here, the genome sequences of 9P. The strains, together with 26 other sequenced Maize were comparatively studied. Phylogenetic analysis of the concatenated 244 single-copy core genes suggests that the 9P. The strains and 5 other Paenibacillus spp., isolated from diverse geographic regions and ecological niches, formed a closely related clade (here it is called Poly-clade). Analysis of single nucleotide polymorphisms (SNPs) reveals local diversification of the 14 Poly-clade genomes. SNPs were not evenly distributed throughout the 14 genomes and the regions with high SNP density contain the genes related to secondary metabolism, including genes coding for polyketide. Recombination played an important role in the genetic diversity of this clade, although the rate of recombination was clearly lower than mutation. The distinction among people and different creatures can be gotten by relative examinations. This study reveals that both maize and its closely related species have plant growth promoting traits and they have great potential uses in agriculture and horticulture as PGPR.","PeriodicalId":19364,"journal":{"name":"Notulae Botanicae Horti Agrobotanici Cluj-napoca","volume":"105 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene mining and functional analysis related to maize (Zea mays L.) seed size\",\"authors\":\"Syed F.A. GILLANI, Adnan RASHEED, Yasir MAJEED, Shamshad S. BUKHARI, Huma TARIQ, None Shafiq-Ur-REHMAN, Zhan-Wu GAO\",\"doi\":\"10.15835/nbha51312659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maize has widely been studied as a model of plant-growth promoting rhizobacteria (PGPR). Here, the genome sequences of 9P. The strains, together with 26 other sequenced Maize were comparatively studied. Phylogenetic analysis of the concatenated 244 single-copy core genes suggests that the 9P. The strains and 5 other Paenibacillus spp., isolated from diverse geographic regions and ecological niches, formed a closely related clade (here it is called Poly-clade). Analysis of single nucleotide polymorphisms (SNPs) reveals local diversification of the 14 Poly-clade genomes. SNPs were not evenly distributed throughout the 14 genomes and the regions with high SNP density contain the genes related to secondary metabolism, including genes coding for polyketide. Recombination played an important role in the genetic diversity of this clade, although the rate of recombination was clearly lower than mutation. The distinction among people and different creatures can be gotten by relative examinations. This study reveals that both maize and its closely related species have plant growth promoting traits and they have great potential uses in agriculture and horticulture as PGPR.\",\"PeriodicalId\":19364,\"journal\":{\"name\":\"Notulae Botanicae Horti Agrobotanici Cluj-napoca\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notulae Botanicae Horti Agrobotanici Cluj-napoca\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15835/nbha51312659\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notulae Botanicae Horti Agrobotanici Cluj-napoca","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15835/nbha51312659","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Gene mining and functional analysis related to maize (Zea mays L.) seed size
Maize has widely been studied as a model of plant-growth promoting rhizobacteria (PGPR). Here, the genome sequences of 9P. The strains, together with 26 other sequenced Maize were comparatively studied. Phylogenetic analysis of the concatenated 244 single-copy core genes suggests that the 9P. The strains and 5 other Paenibacillus spp., isolated from diverse geographic regions and ecological niches, formed a closely related clade (here it is called Poly-clade). Analysis of single nucleotide polymorphisms (SNPs) reveals local diversification of the 14 Poly-clade genomes. SNPs were not evenly distributed throughout the 14 genomes and the regions with high SNP density contain the genes related to secondary metabolism, including genes coding for polyketide. Recombination played an important role in the genetic diversity of this clade, although the rate of recombination was clearly lower than mutation. The distinction among people and different creatures can be gotten by relative examinations. This study reveals that both maize and its closely related species have plant growth promoting traits and they have great potential uses in agriculture and horticulture as PGPR.
期刊介绍:
Notulae Botanicae Horti Agrobotanici Cluj-Napoca is a peer-reviewed biannual journal aimed at disseminating significant research and original papers, critical reviews and short reviews. The subjects refer on plant biodiversity, genetics and plant breeding, development of new methodologies that can be of interest to a wide audience of plant scientists in all areas of plant biology, agriculture, horticulture and forestry. The journal encourages authors to frame their research questions and discuss their results in terms of the major questions of plant sciences, thereby maximizing the impact and value of their research, and thus in favor of spreading their studies outcome. The papers must be of potential interest to a significant number of scientists and, if specific to a local situation, must be relevant to a wide body of knowledge in life sciences. Articles should make a significant contribution to the advancement of knowledge or toward a better understanding of existing biological and agricultural concepts. An international Editorial Board advises the journal. The total content of the journal may be used for educational, non-profit purposes without regard to copyright. The distribution of the material is encouraged with the condition that the authors and the source (Notulae Botanicae Horti Agrobotanici Cluj-Napoca or JCR abbrev. title Not Bot Horti Agrobo) are mentioned.