Na Li, Xueming Zhu, Hui Wang, Shouwen Zhang, Xidong Wang
{"title":"阿拉伯海暖池海温的季节内和年际变化","authors":"Na Li, Xueming Zhu, Hui Wang, Shouwen Zhang, Xidong Wang","doi":"10.5194/os-19-1437-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The Arabian Sea Warm Pool (ASWP) is a part of the Indian Ocean Warm Pool, formed in the Arabian Sea before the onset of the Indian summer monsoon. The ASWP has a significant impact on climate change in the Indian Peninsula and globally. In this study, we examined the intraseasonal and interannual variability of sea temperature in the ASWP using the latest Simple Ocean Data Assimilation (SODA) reanalysis dataset. We quantified the contributions of sea surface heat flux forcing, horizontal advection, and vertical entrainment to the sea temperature using the mixed-layer heat budget analysis method. We also used a lead–lag correlation method to examine the relationship between the interannual variability of the ASWP and various large-scale modes in the Indo-Pacific Ocean. We found that the ASWP formed in April and decayed in June; its formation and decay processes were asymmetrical, with the decay rate being twice as fast as the formation rate. During the ASWP development phase, the sea surface heat flux forcing had the largest impact on the mixed-layer temperature with a contribution of up to 85 %. Its impact was divided into the net surface heat flux (0.41–0.50 ∘C per 5 d) and the shortwave radiation loss penetrating the mixed layer (from −0.08 ∘C per 5 d to −0.17 ∘C per 5 d). During the decay phase, the cooling effect of the vertical entrainment on the temperature variation increased (from −0.05 ∘C per 5 d to −0.18 ∘C per 5 d) and dominated the temperature variation jointly with the sea surface heat flux forcing. We also found that the ASWP has strong interannual variability related to the basin warming of the Indian Ocean. The lead–lag correlation indicated that the ASWP had a good synchronous correlation with the Indian Ocean Dipole. The ASWP had the largest correlation coefficient at a lag of 5–7 months of the Niño3.4 index, showing the characteristics of modulation by the El Niño–Southern Oscillation (ENSO). When the El Niño (La Niña) event peaked in the winter of the previous year, the ASWP that occurred before the summer monsoon was more significant (insignificant) in the following year.","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"252 1","pages":"0"},"PeriodicalIF":4.1000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intraseasonal and interannual variability of sea temperature in the Arabian Sea Warm Pool\",\"authors\":\"Na Li, Xueming Zhu, Hui Wang, Shouwen Zhang, Xidong Wang\",\"doi\":\"10.5194/os-19-1437-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The Arabian Sea Warm Pool (ASWP) is a part of the Indian Ocean Warm Pool, formed in the Arabian Sea before the onset of the Indian summer monsoon. The ASWP has a significant impact on climate change in the Indian Peninsula and globally. In this study, we examined the intraseasonal and interannual variability of sea temperature in the ASWP using the latest Simple Ocean Data Assimilation (SODA) reanalysis dataset. We quantified the contributions of sea surface heat flux forcing, horizontal advection, and vertical entrainment to the sea temperature using the mixed-layer heat budget analysis method. We also used a lead–lag correlation method to examine the relationship between the interannual variability of the ASWP and various large-scale modes in the Indo-Pacific Ocean. We found that the ASWP formed in April and decayed in June; its formation and decay processes were asymmetrical, with the decay rate being twice as fast as the formation rate. During the ASWP development phase, the sea surface heat flux forcing had the largest impact on the mixed-layer temperature with a contribution of up to 85 %. Its impact was divided into the net surface heat flux (0.41–0.50 ∘C per 5 d) and the shortwave radiation loss penetrating the mixed layer (from −0.08 ∘C per 5 d to −0.17 ∘C per 5 d). During the decay phase, the cooling effect of the vertical entrainment on the temperature variation increased (from −0.05 ∘C per 5 d to −0.18 ∘C per 5 d) and dominated the temperature variation jointly with the sea surface heat flux forcing. We also found that the ASWP has strong interannual variability related to the basin warming of the Indian Ocean. The lead–lag correlation indicated that the ASWP had a good synchronous correlation with the Indian Ocean Dipole. The ASWP had the largest correlation coefficient at a lag of 5–7 months of the Niño3.4 index, showing the characteristics of modulation by the El Niño–Southern Oscillation (ENSO). When the El Niño (La Niña) event peaked in the winter of the previous year, the ASWP that occurred before the summer monsoon was more significant (insignificant) in the following year.\",\"PeriodicalId\":19535,\"journal\":{\"name\":\"Ocean Science\",\"volume\":\"252 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/os-19-1437-2023\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/os-19-1437-2023","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Intraseasonal and interannual variability of sea temperature in the Arabian Sea Warm Pool
Abstract. The Arabian Sea Warm Pool (ASWP) is a part of the Indian Ocean Warm Pool, formed in the Arabian Sea before the onset of the Indian summer monsoon. The ASWP has a significant impact on climate change in the Indian Peninsula and globally. In this study, we examined the intraseasonal and interannual variability of sea temperature in the ASWP using the latest Simple Ocean Data Assimilation (SODA) reanalysis dataset. We quantified the contributions of sea surface heat flux forcing, horizontal advection, and vertical entrainment to the sea temperature using the mixed-layer heat budget analysis method. We also used a lead–lag correlation method to examine the relationship between the interannual variability of the ASWP and various large-scale modes in the Indo-Pacific Ocean. We found that the ASWP formed in April and decayed in June; its formation and decay processes were asymmetrical, with the decay rate being twice as fast as the formation rate. During the ASWP development phase, the sea surface heat flux forcing had the largest impact on the mixed-layer temperature with a contribution of up to 85 %. Its impact was divided into the net surface heat flux (0.41–0.50 ∘C per 5 d) and the shortwave radiation loss penetrating the mixed layer (from −0.08 ∘C per 5 d to −0.17 ∘C per 5 d). During the decay phase, the cooling effect of the vertical entrainment on the temperature variation increased (from −0.05 ∘C per 5 d to −0.18 ∘C per 5 d) and dominated the temperature variation jointly with the sea surface heat flux forcing. We also found that the ASWP has strong interannual variability related to the basin warming of the Indian Ocean. The lead–lag correlation indicated that the ASWP had a good synchronous correlation with the Indian Ocean Dipole. The ASWP had the largest correlation coefficient at a lag of 5–7 months of the Niño3.4 index, showing the characteristics of modulation by the El Niño–Southern Oscillation (ENSO). When the El Niño (La Niña) event peaked in the winter of the previous year, the ASWP that occurred before the summer monsoon was more significant (insignificant) in the following year.
期刊介绍:
Ocean Science (OS) is a not-for-profit international open-access scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on all aspects of ocean science: experimental, theoretical, and laboratory. The primary objective is to publish a very high-quality scientific journal with free Internet-based access for researchers and other interested people throughout the world.
Electronic submission of articles is used to keep publication costs to a minimum. The costs will be covered by a moderate per-page charge paid by the authors. The peer-review process also makes use of the Internet. It includes an 8-week online discussion period with the original submitted manuscript and all comments. If accepted, the final revised paper will be published online.
Ocean Science covers the following fields: ocean physics (i.e. ocean structure, circulation, tides, and internal waves); ocean chemistry; biological oceanography; air–sea interactions; ocean models – physical, chemical, biological, and biochemical; coastal and shelf edge processes; paleooceanography.