F. Marta L. Di Lascio, Andrea Menapace, Roberta Pappadà
{"title":"基于空间加权 AMH copula 的变量聚类差异度量:城市热效率应用","authors":"F. Marta L. Di Lascio, Andrea Menapace, Roberta Pappadà","doi":"10.1002/env.2828","DOIUrl":null,"url":null,"abstract":"<p>Investigating thermal energy demand is crucial for developing sustainable cities and the efficient use of renewable sources. Despite the advances made in this field, the analysis of energy data provided by smart grids is currently a demanding challenge due to their complex multivariate structure and high dimensionality. In this article, we propose a novel copula-based dissimilarity measure suitable for analyzing district heating demand and introduce a procedure to apply it to high-temporal resolution panel data. Inspired by the characteristics of the considered data, we explore the usefulness of the Ali-Mikhail-Haq copula in defining a new dissimilarity measure to cluster variables in the hierarchical framework. We show that our proposal is particularly sensitive to small dissimilarities based on tiny differences in the strength of the dependence between the involved random variables. Therefore, the measure we introduce is able to distinguish between objects with low dissimilarity better than standard rank-based dissimilarity measures. Moreover, our proposal considers a weighted version of the copula-based dissimilarity that embeds the spatial location of the involved objects. We investigate the proposed measure through Monte Carlo studies and compare it with an analogous dissimilarity measure based on Kendall's correlation. Finally, the application to real data concerning the Italian city Bozen-Bolzano makes it possible to find clusters of buildings homogeneous with respect to their main characteristics, such as energy efficiency and heating surface. In turn, our findings may support the design, expansion, and management of district heating systems.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A spatially-weighted AMH copula-based dissimilarity measure for clustering variables: An application to urban thermal efficiency\",\"authors\":\"F. Marta L. Di Lascio, Andrea Menapace, Roberta Pappadà\",\"doi\":\"10.1002/env.2828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Investigating thermal energy demand is crucial for developing sustainable cities and the efficient use of renewable sources. Despite the advances made in this field, the analysis of energy data provided by smart grids is currently a demanding challenge due to their complex multivariate structure and high dimensionality. In this article, we propose a novel copula-based dissimilarity measure suitable for analyzing district heating demand and introduce a procedure to apply it to high-temporal resolution panel data. Inspired by the characteristics of the considered data, we explore the usefulness of the Ali-Mikhail-Haq copula in defining a new dissimilarity measure to cluster variables in the hierarchical framework. We show that our proposal is particularly sensitive to small dissimilarities based on tiny differences in the strength of the dependence between the involved random variables. Therefore, the measure we introduce is able to distinguish between objects with low dissimilarity better than standard rank-based dissimilarity measures. Moreover, our proposal considers a weighted version of the copula-based dissimilarity that embeds the spatial location of the involved objects. We investigate the proposed measure through Monte Carlo studies and compare it with an analogous dissimilarity measure based on Kendall's correlation. Finally, the application to real data concerning the Italian city Bozen-Bolzano makes it possible to find clusters of buildings homogeneous with respect to their main characteristics, such as energy efficiency and heating surface. In turn, our findings may support the design, expansion, and management of district heating systems.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2828\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2828","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A spatially-weighted AMH copula-based dissimilarity measure for clustering variables: An application to urban thermal efficiency
Investigating thermal energy demand is crucial for developing sustainable cities and the efficient use of renewable sources. Despite the advances made in this field, the analysis of energy data provided by smart grids is currently a demanding challenge due to their complex multivariate structure and high dimensionality. In this article, we propose a novel copula-based dissimilarity measure suitable for analyzing district heating demand and introduce a procedure to apply it to high-temporal resolution panel data. Inspired by the characteristics of the considered data, we explore the usefulness of the Ali-Mikhail-Haq copula in defining a new dissimilarity measure to cluster variables in the hierarchical framework. We show that our proposal is particularly sensitive to small dissimilarities based on tiny differences in the strength of the dependence between the involved random variables. Therefore, the measure we introduce is able to distinguish between objects with low dissimilarity better than standard rank-based dissimilarity measures. Moreover, our proposal considers a weighted version of the copula-based dissimilarity that embeds the spatial location of the involved objects. We investigate the proposed measure through Monte Carlo studies and compare it with an analogous dissimilarity measure based on Kendall's correlation. Finally, the application to real data concerning the Italian city Bozen-Bolzano makes it possible to find clusters of buildings homogeneous with respect to their main characteristics, such as energy efficiency and heating surface. In turn, our findings may support the design, expansion, and management of district heating systems.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.