论复合板的无限群速度

Sergey V Kuznetsov
{"title":"论复合板的无限群速度","authors":"Sergey V Kuznetsov","doi":"10.1177/10996362231207876","DOIUrl":null,"url":null,"abstract":"The analytical and geometrical conditions for the possible appearance of the infinite group velocity (IGV) points belonging to the dispersion curves of Lamb waves propagating in traction-free plates are studied by a combined method comprising Cauchy sextic formalism and the exponential fundamental matrix method. According to the obtained geometrical condition, the IGV corresponds to the coincidence of a tangent line to any of the dispersion curves with a straight line passing through the origin. The developed technique is demonstrated by applying to the analysis of Lamb wave dispersion in three-layered plates with a soft inner core.","PeriodicalId":16977,"journal":{"name":"Journal of Sandwich Structures and Materials","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On infinite group velocity in composite plates\",\"authors\":\"Sergey V Kuznetsov\",\"doi\":\"10.1177/10996362231207876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The analytical and geometrical conditions for the possible appearance of the infinite group velocity (IGV) points belonging to the dispersion curves of Lamb waves propagating in traction-free plates are studied by a combined method comprising Cauchy sextic formalism and the exponential fundamental matrix method. According to the obtained geometrical condition, the IGV corresponds to the coincidence of a tangent line to any of the dispersion curves with a straight line passing through the origin. The developed technique is demonstrated by applying to the analysis of Lamb wave dispersion in three-layered plates with a soft inner core.\",\"PeriodicalId\":16977,\"journal\":{\"name\":\"Journal of Sandwich Structures and Materials\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sandwich Structures and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/10996362231207876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sandwich Structures and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10996362231207876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用柯西六分形法和指数基阵法的组合方法,研究了无牵引力板中兰姆波频散曲线中可能出现无限群速点的解析条件和几何条件。根据得到的几何条件,IGV对应于任何色散曲线的切线与经过原点的直线的重合。通过对软内芯三层板中兰姆波色散的分析,验证了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On infinite group velocity in composite plates
The analytical and geometrical conditions for the possible appearance of the infinite group velocity (IGV) points belonging to the dispersion curves of Lamb waves propagating in traction-free plates are studied by a combined method comprising Cauchy sextic formalism and the exponential fundamental matrix method. According to the obtained geometrical condition, the IGV corresponds to the coincidence of a tangent line to any of the dispersion curves with a straight line passing through the origin. The developed technique is demonstrated by applying to the analysis of Lamb wave dispersion in three-layered plates with a soft inner core.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信